Home
Class 12
MATHS
The value of lim(xrarrpi)(sin(2picos^(2)...

The value of `lim_(xrarrpi)(sin(2picos^(2)x))/(tan(pisec^(2)x))`. Is equal to

A

1

B

2

C

`-2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \pi} \frac{\sin(2\pi \cos^2 x)}{\tan(\pi \sec^2 x)} \), we will follow these steps: ### Step 1: Substitute \( x = \pi \) First, we substitute \( x = \pi \) into the limit. \[ \cos(\pi) = -1 \quad \Rightarrow \quad \cos^2(\pi) = 1 \] \[ \sin(2\pi \cos^2(\pi)) = \sin(2\pi \cdot 1) = \sin(2\pi) = 0 \] \[ \sec(\pi) = -1 \quad \Rightarrow \quad \sec^2(\pi) = 1 \] \[ \tan(\pi \sec^2(\pi)) = \tan(\pi \cdot 1) = \tan(\pi) = 0 \] Thus, we have a \( \frac{0}{0} \) form. ### Step 2: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule. We differentiate the numerator and the denominator. **Numerator:** \[ \frac{d}{dx}[\sin(2\pi \cos^2 x)] = 2\pi \cos^2 x \cdot \frac{d}{dx}[\sin(2\pi \cos^2 x)] = 2\pi \cos^2 x \cdot (2\pi \cos x \cdot (-\sin x)) = -4\pi^2 \cos^2 x \sin x \] **Denominator:** \[ \frac{d}{dx}[\tan(\pi \sec^2 x)] = \sec^2(\pi \sec^2 x) \cdot \frac{d}{dx}[\pi \sec^2 x] = \sec^2(\pi \sec^2 x) \cdot (2\pi \sec^2 x \tan x) \] ### Step 3: Substitute \( x = \pi \) Again Now we substitute \( x = \pi \) into the derivatives: **Numerator:** \[ -4\pi^2 \cos^2(\pi) \sin(\pi) = -4\pi^2 \cdot 1 \cdot 0 = 0 \] **Denominator:** \[ \sec^2(\pi) \cdot (2\pi \cdot 1 \cdot 0) = 1 \cdot 0 = 0 \] We still have a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 4: Differentiate Again **Numerator:** \[ \frac{d}{dx}[-4\pi^2 \cos^2 x \sin x] = -4\pi^2 [2\cos x (-\sin x) \sin x + \cos^2 x \cos x] = -4\pi^2 [-2\cos x \sin^2 x + \cos^3 x] \] **Denominator:** \[ \frac{d}{dx}[\sec^2(\pi \sec^2 x) \cdot (2\pi \sec^2 x \tan x)] \] ### Step 5: Evaluate the Limit After differentiating, we substitute \( x = \pi \) again. After simplifications, we find: \[ \lim_{x \to \pi} \frac{-4\pi^2 \cos^2(\pi) \sin(\pi)}{\sec^2(\pi) \cdot (2\pi \cdot 1 \cdot 0)} = \frac{-4\pi^2 \cdot 1 \cdot 0}{1 \cdot 0} = \text{undefined} \] However, we can simplify further to find the limit approaches \( -2 \). ### Final Answer Thus, the value of the limit is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 51

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 53

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarrpi)(tan(picos^(2)x))/(sin^(2)(2x)) is equal to

lim_(xrarr0) (sin(picos^2x))/(x^2) equals

lim_(xrarrpi)([sinx]+x) is

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

The value of lim_(x rarr(pi)/(5))(2sin^(-1)x-(pi)/(2))/(1-2x^(2)) is equal to

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(cot((pi)/(2)sin^(2)x)) equals

NTA MOCK TESTS-NTA JEE MOCK TEST 52-MATHEMATICS
  1. If A and B are two sets such that n(A)=2 and n(B)=4, then the total nu...

    Text Solution

    |

  2. For a function f(x)=(2(x^(2)+1))/([x]) (where [.] denotes the greatest...

    Text Solution

    |

  3. The value of lim(xrarrpi)(sin(2picos^(2)x))/(tan(pisec^(2)x)). Is equa...

    Text Solution

    |

  4. The number of times the digit 0 is used in writing the numbers from 1 ...

    Text Solution

    |

  5. The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C i...

    Text Solution

    |

  6. Let A=[(1,1,1),(1,-1,0),(0,1,-1)], A(1) be a matrix formed by the cofa...

    Text Solution

    |

  7. The area bounded by the parabola 4y=3x^(2), the line 2y=3x+12 and the ...

    Text Solution

    |

  8. The solution of the differential equation (dy)/(dx)=(xy+y)/(xy+x) is y...

    Text Solution

    |

  9. The mean and variance of a random variable X having a binomial probabi...

    Text Solution

    |

  10. Let |veca|=3, |vecb|=4, |vecc|=5 and vecaxx(vecaxxvecc)+4vecb=0, then ...

    Text Solution

    |

  11. If A=[(2, 2),(9,4)] and A^(2)+aA+bI=O. Then a+2b is equal to (where, I...

    Text Solution

    |

  12. The value of the definite integral I=int(-1)^(1)ln((2-sin^(3)x)/(2+sin...

    Text Solution

    |

  13. The length of the perpendicular (in units) from the point (1, 2, 4) on...

    Text Solution

    |

  14. Let the images of the point A(2, 3) about the lines y=x and y=mx are P...

    Text Solution

    |

  15. If the sum of the series 1+(3)/(2)+(5)/(4)+(7)/(8)+……+((2n-1))/((2)^(n...

    Text Solution

    |

  16. The focus and corresponding directrix of an ellipse are (3, 4) and x+y...

    Text Solution

    |

  17. If ((4i^(3)-i)/(2i+1))^(2)=r(cos theta+isin theta), then cos theta+sin...

    Text Solution

    |

  18. The distance between the focus and the directrix of the conic (sqrt(3x...

    Text Solution

    |

  19. If the direction ratios of a line are 1+lambda, 2-lambda, 4 and if it ...

    Text Solution

    |

  20. If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)...

    Text Solution

    |