Home
Class 12
MATHS
The integral I=inte^(x)((1+sinx)/(1+cosx...

The integral `I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C`
(where, C is the constant of integration).
Then, the range of `y=f(x)` (for all x in the domain of `f(x)`) is

A

`[-1, 1]`

B

`(-oo, oo)`

C

`(-1, 1)`

D

`[0, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^x \frac{1 + \sin x}{1 + \cos x} \, dx \) and express it in the form \( I = e^x f(x) + C \), we will follow these steps: ### Step 1: Simplify the integrand We start with the integrand \( \frac{1 + \sin x}{1 + \cos x} \). We can rewrite \( \cos x \) in terms of \( \tan \frac{x}{2} \): \[ \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] This gives us: \[ 1 + \cos x = 1 + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{(1 + \tan^2 \frac{x}{2}) + (1 - \tan^2 \frac{x}{2})}{1 + \tan^2 \frac{x}{2}} = \frac{2}{1 + \tan^2 \frac{x}{2}} \] Now, we can express \( 1 + \sin x \): \[ 1 + \sin x = 1 + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{(1 + \tan^2 \frac{x}{2}) + 2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{1 + 2 \tan \frac{x}{2} + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{(1 + \tan \frac{x}{2})^2}{1 + \tan^2 \frac{x}{2}} \] Thus, we have: \[ \frac{1 + \sin x}{1 + \cos x} = \frac{(1 + \tan \frac{x}{2})^2}{2} \] ### Step 2: Substitute into the integral Now we can substitute this back into the integral: \[ I = \int e^x \frac{(1 + \tan \frac{x}{2})^2}{2} \, dx \] ### Step 3: Use integration by parts We can use integration by parts where we let: \[ u = \frac{(1 + \tan \frac{x}{2})^2}{2}, \quad dv = e^x \, dx \] Then we find \( du \) and \( v \): \[ du = (1 + \tan \frac{x}{2}) \cdot \sec^2 \frac{x}{2} \cdot \frac{1}{2} \, dx, \quad v = e^x \] ### Step 4: Apply integration by parts Using integration by parts: \[ I = e^x \cdot \frac{(1 + \tan \frac{x}{2})^2}{2} - \int e^x \cdot \left( (1 + \tan \frac{x}{2}) \cdot \sec^2 \frac{x}{2} \cdot \frac{1}{2} \right) \, dx \] ### Step 5: Solve for \( f(x) \) From the integration, we find that: \[ I = e^x f(x) + C \] where \( f(x) = \frac{(1 + \tan \frac{x}{2})^2}{2} \). ### Step 6: Determine the range of \( f(x) \) To find the range of \( f(x) \): 1. As \( x \) varies over all real numbers, \( \tan \frac{x}{2} \) will take all real values from \( -\infty \) to \( +\infty \). 2. The expression \( (1 + \tan \frac{x}{2})^2 \) will be non-negative and can take any value from \( 0 \) to \( +\infty \). 3. Therefore, \( f(x) = \frac{(1 + \tan \frac{x}{2})^2}{2} \) will also take values from \( 0 \) to \( +\infty \). ### Final Answer The range of \( y = f(x) \) is \( [0, +\infty) \). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 51

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 53

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integration), then the range of y=f(x), AA x in R-{-1, 0} is

The integral I=int((1)/(x.secx)-ln(x^(sinx)))dx simplifies to (where, c is the constant of integration)

The integral I=int(2sinx)/((3+sin2x))dx simplifies to (where, C is the constant of integration)

The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C is the constant of integration)

The integral int((x)/(x sin x+cos x))^(2)" dx is equal to (where C is a constant of integration )

The integral int((x)/(x sin x+cos x))^(2)dx is equal to (where "C" is a constant of integration

If inte^(sinx)((xcos^(3)x-sinx)/(cos^(2)x))dx=e^(sinx)f(x)+c , where c is constant of integration, then f(x)=

int(dx)/(1+e^(-x)) is equal to : Where c is the constant of integration.

NTA MOCK TESTS-NTA JEE MOCK TEST 52-MATHEMATICS
  1. For a function f(x)=(2(x^(2)+1))/([x]) (where [.] denotes the greatest...

    Text Solution

    |

  2. The value of lim(xrarrpi)(sin(2picos^(2)x))/(tan(pisec^(2)x)). Is equa...

    Text Solution

    |

  3. The number of times the digit 0 is used in writing the numbers from 1 ...

    Text Solution

    |

  4. The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C i...

    Text Solution

    |

  5. Let A=[(1,1,1),(1,-1,0),(0,1,-1)], A(1) be a matrix formed by the cofa...

    Text Solution

    |

  6. The area bounded by the parabola 4y=3x^(2), the line 2y=3x+12 and the ...

    Text Solution

    |

  7. The solution of the differential equation (dy)/(dx)=(xy+y)/(xy+x) is y...

    Text Solution

    |

  8. The mean and variance of a random variable X having a binomial probabi...

    Text Solution

    |

  9. Let |veca|=3, |vecb|=4, |vecc|=5 and vecaxx(vecaxxvecc)+4vecb=0, then ...

    Text Solution

    |

  10. If A=[(2, 2),(9,4)] and A^(2)+aA+bI=O. Then a+2b is equal to (where, I...

    Text Solution

    |

  11. The value of the definite integral I=int(-1)^(1)ln((2-sin^(3)x)/(2+sin...

    Text Solution

    |

  12. The length of the perpendicular (in units) from the point (1, 2, 4) on...

    Text Solution

    |

  13. Let the images of the point A(2, 3) about the lines y=x and y=mx are P...

    Text Solution

    |

  14. If the sum of the series 1+(3)/(2)+(5)/(4)+(7)/(8)+……+((2n-1))/((2)^(n...

    Text Solution

    |

  15. The focus and corresponding directrix of an ellipse are (3, 4) and x+y...

    Text Solution

    |

  16. If ((4i^(3)-i)/(2i+1))^(2)=r(cos theta+isin theta), then cos theta+sin...

    Text Solution

    |

  17. The distance between the focus and the directrix of the conic (sqrt(3x...

    Text Solution

    |

  18. If the direction ratios of a line are 1+lambda, 2-lambda, 4 and if it ...

    Text Solution

    |

  19. If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)...

    Text Solution

    |

  20. The volume of the greatest cone obtained by rotating a right - angled ...

    Text Solution

    |