Home
Class 12
MATHS
If the direction ratios of a line are 1+...

If the direction ratios of a line are `1+lambda, 2-lambda, 4` and if it makes an angle of `60^(@)` with the y- axis, then the sum of the values of `lambda` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \lambda \) given the direction ratios of a line and the angle it makes with the y-axis. ### Step-by-Step Solution: 1. **Identify the Direction Ratios**: The direction ratios of the line are given as: \[ l = 1 + \lambda, \quad m = 2 - \lambda, \quad n = 4 \] 2. **Use the Angle with the y-axis**: The line makes an angle of \( 60^\circ \) with the y-axis. The cosine of the angle \( \beta \) with the y-axis is: \[ \cos \beta = \cos 60^\circ = \frac{1}{2} \] 3. **Relate Cosine to Direction Ratios**: The cosine of the angle \( \beta \) can also be expressed using the direction ratios: \[ \cos \beta = \frac{m}{\sqrt{l^2 + m^2 + n^2}} \] Substituting the values: \[ \frac{2 - \lambda}{\sqrt{(1 + \lambda)^2 + (2 - \lambda)^2 + 4^2}} = \frac{1}{2} \] 4. **Square Both Sides**: Squaring both sides gives: \[ \left(2 - \lambda\right)^2 = \frac{1}{4} \left((1 + \lambda)^2 + (2 - \lambda)^2 + 16\right) \] 5. **Expand Both Sides**: Expanding the left side: \[ (2 - \lambda)^2 = 4 - 4\lambda + \lambda^2 \] Expanding the right side: \[ (1 + \lambda)^2 = 1 + 2\lambda + \lambda^2 \] \[ (2 - \lambda)^2 = 4 - 4\lambda + \lambda^2 \] Thus, \[ 1 + 2\lambda + \lambda^2 + 4 - 4\lambda + \lambda^2 + 16 = 21 - 2\lambda + 2\lambda^2 \] Therefore, the equation becomes: \[ 4 - 4\lambda + \lambda^2 = \frac{1}{4} (21 - 2\lambda + 2\lambda^2) \] 6. **Multiply Through by 4**: To eliminate the fraction: \[ 16 - 16\lambda + 4\lambda^2 = 21 - 2\lambda + 2\lambda^2 \] 7. **Rearrange the Equation**: Bringing all terms to one side: \[ 4\lambda^2 - 2\lambda - 5 = 0 \] 8. **Use the Quadratic Formula**: The quadratic formula is given by: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 4, b = -2, c = -5 \): \[ \lambda = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 4 \cdot (-5)}}{2 \cdot 4} \] \[ = \frac{2 \pm \sqrt{4 + 80}}{8} \] \[ = \frac{2 \pm \sqrt{84}}{8} \] \[ = \frac{2 \pm 2\sqrt{21}}{8} = \frac{1 \pm \sqrt{21}}{4} \] 9. **Sum of the Values of \( \lambda \)**: The two values of \( \lambda \) are: \[ \lambda_1 = \frac{1 + \sqrt{21}}{4}, \quad \lambda_2 = \frac{1 - \sqrt{21}}{4} \] The sum of the values of \( \lambda \) is: \[ \lambda_1 + \lambda_2 = \frac{1 + \sqrt{21}}{4} + \frac{1 - \sqrt{21}}{4} = \frac{2}{4} = \frac{1}{2} \] ### Final Answer: The sum of the values of \( \lambda \) is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 51

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 53

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the direction ratios of a line are 1 + lambda, 1- lambda, 2, and it makes an angle of 60^(@) with the y-axis then lambda is

If the direction ratios of two lines are (1, lambda, 2) and (lambda, lambda + 1, lambda) and the angle between the lines is 90^(@) then the modulus of sum of all values of lambda is ________

The direction ratios of two parallel lines are 4,-3,-1 and lambda+mu,1+mu,2. The value of the pair (lambda,mu) is

If the image of the point M(lambda,lambda^(2)) on the line x+y = lambda^(2) is N(0, 2), then the sum of the square of all the possible values of lambda is equal to

The vertices of a triangle ABC are (lambda,2-2 lambda)(-lambda+1,2 lambda) and (-4-lambda,6-2 lambda). If its area be 70 units then number of integral values of lambda is

if points (2lambda, 2lambda+2) , (3, 2lambda + 1) And (1,lambda + 1) are linear, then lambda find the value of

The area enclosed by y=x^(3) , its normal at (1,1) and x - axis is lambda , then find the value of 4 lambda = ?

NTA MOCK TESTS-NTA JEE MOCK TEST 52-MATHEMATICS
  1. For a function f(x)=(2(x^(2)+1))/([x]) (where [.] denotes the greatest...

    Text Solution

    |

  2. The value of lim(xrarrpi)(sin(2picos^(2)x))/(tan(pisec^(2)x)). Is equa...

    Text Solution

    |

  3. The number of times the digit 0 is used in writing the numbers from 1 ...

    Text Solution

    |

  4. The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C i...

    Text Solution

    |

  5. Let A=[(1,1,1),(1,-1,0),(0,1,-1)], A(1) be a matrix formed by the cofa...

    Text Solution

    |

  6. The area bounded by the parabola 4y=3x^(2), the line 2y=3x+12 and the ...

    Text Solution

    |

  7. The solution of the differential equation (dy)/(dx)=(xy+y)/(xy+x) is y...

    Text Solution

    |

  8. The mean and variance of a random variable X having a binomial probabi...

    Text Solution

    |

  9. Let |veca|=3, |vecb|=4, |vecc|=5 and vecaxx(vecaxxvecc)+4vecb=0, then ...

    Text Solution

    |

  10. If A=[(2, 2),(9,4)] and A^(2)+aA+bI=O. Then a+2b is equal to (where, I...

    Text Solution

    |

  11. The value of the definite integral I=int(-1)^(1)ln((2-sin^(3)x)/(2+sin...

    Text Solution

    |

  12. The length of the perpendicular (in units) from the point (1, 2, 4) on...

    Text Solution

    |

  13. Let the images of the point A(2, 3) about the lines y=x and y=mx are P...

    Text Solution

    |

  14. If the sum of the series 1+(3)/(2)+(5)/(4)+(7)/(8)+……+((2n-1))/((2)^(n...

    Text Solution

    |

  15. The focus and corresponding directrix of an ellipse are (3, 4) and x+y...

    Text Solution

    |

  16. If ((4i^(3)-i)/(2i+1))^(2)=r(cos theta+isin theta), then cos theta+sin...

    Text Solution

    |

  17. The distance between the focus and the directrix of the conic (sqrt(3x...

    Text Solution

    |

  18. If the direction ratios of a line are 1+lambda, 2-lambda, 4 and if it ...

    Text Solution

    |

  19. If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)...

    Text Solution

    |

  20. The volume of the greatest cone obtained by rotating a right - angled ...

    Text Solution

    |