Home
Class 12
MATHS
If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=...

If `sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x))`
then the value of x is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{5}{x}\right) + \sin^{-1}\left(\frac{12}{x}\right) = \sin^{-1}\left(\frac{2}{x}\right) + \cos^{-1}\left(\frac{2}{x}\right), \] we can follow these steps: ### Step 1: Use the identity for inverse sine and cosine We know that \[ \sin^{-1}(a) + \cos^{-1}(a) = \frac{\pi}{2}. \] Thus, we can rewrite the right-hand side: \[ \sin^{-1}\left(\frac{2}{x}\right) + \cos^{-1}\left(\frac{2}{x}\right) = \frac{\pi}{2}. \] ### Step 2: Substitute into the equation Substituting this into our equation gives: \[ \sin^{-1}\left(\frac{5}{x}\right) + \sin^{-1}\left(\frac{12}{x}\right) = \frac{\pi}{2}. \] ### Step 3: Rearrange the equation Rearranging the equation, we have: \[ \sin^{-1}\left(\frac{5}{x}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{12}{x}\right). \] ### Step 4: Use the sine identity Using the identity \(\sin^{-1}(a) = \frac{\pi}{2} - \cos^{-1}(a)\), we can express this as: \[ \frac{5}{x} = \cos\left(\sin^{-1}\left(\frac{12}{x}\right)\right). \] ### Step 5: Apply the cosine identity Using the identity \(\cos(\sin^{-1}(y)) = \sqrt{1 - y^2}\), we can write: \[ \frac{5}{x} = \sqrt{1 - \left(\frac{12}{x}\right)^2}. \] ### Step 6: Square both sides Squaring both sides gives: \[ \left(\frac{5}{x}\right)^2 = 1 - \left(\frac{12}{x}\right)^2. \] This simplifies to: \[ \frac{25}{x^2} = 1 - \frac{144}{x^2}. \] ### Step 7: Combine terms Combining the terms leads to: \[ \frac{25 + 144}{x^2} = 1, \] which simplifies to: \[ \frac{169}{x^2} = 1. \] ### Step 8: Solve for \(x^2\) Cross-multiplying gives: \[ 169 = x^2. \] ### Step 9: Take the square root Taking the square root of both sides gives: \[ x = 13 \quad \text{or} \quad x = -13. \] ### Step 10: Check for validity We need to check which values are valid in the context of the original equation. 1. For \(x = 13\): - \(\sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{12}{13}\right) = \frac{\pi}{2}\) is valid. 2. For \(x = -13\): - \(\sin^{-1}\left(\frac{-5}{13}\right) + \sin^{-1}\left(\frac{-12}{13}\right) \neq \frac{\pi}{2}\) (as it will yield \(-\frac{\pi}{2}\)). Thus, the only valid solution is: \[ \boxed{13}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 51

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 53

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If "sin"^(-1)(5)/(x) +"sin"^(-1)(12)/(x)=(pi)/(2) , then what is the value of x?

sin ^ (- 1) ((5) / (x)) + sin ^ (- 1) ((12) / (x)) = (pi) / (2)

sin ^ (- 1) ((5) / (x)) + sin ^ (- 1) ((12) / (x)) = (pi) / (2)

If sin^(-1)""(5)/(x)+sin^(-1)""(12)/(x)=(pi)/(2) , then what is the value x?

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

Find the value of sin^(-1)x+sin^(-1)(1)/(x)+cos^(-1)x+cos^(-1)(1)/(x)

int sin^(5//2)x cos^(3)x dx = 2 sin^(A//2)x[(1)/(B)-(1)/(C) sin^(2)x]+C , then the value of (A+B)-C is equal to ........ .

If: sin(sin^(-1)(1/5) + cos^(-1)x)=1 , then: x=

If sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x then x equals

" (2) "sin^(-1)x+sin^(-1)(1/x)+cos^(-1)x+cos^(-1)(1/x)" is equal to "

NTA MOCK TESTS-NTA JEE MOCK TEST 52-MATHEMATICS
  1. For a function f(x)=(2(x^(2)+1))/([x]) (where [.] denotes the greatest...

    Text Solution

    |

  2. The value of lim(xrarrpi)(sin(2picos^(2)x))/(tan(pisec^(2)x)). Is equa...

    Text Solution

    |

  3. The number of times the digit 0 is used in writing the numbers from 1 ...

    Text Solution

    |

  4. The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C i...

    Text Solution

    |

  5. Let A=[(1,1,1),(1,-1,0),(0,1,-1)], A(1) be a matrix formed by the cofa...

    Text Solution

    |

  6. The area bounded by the parabola 4y=3x^(2), the line 2y=3x+12 and the ...

    Text Solution

    |

  7. The solution of the differential equation (dy)/(dx)=(xy+y)/(xy+x) is y...

    Text Solution

    |

  8. The mean and variance of a random variable X having a binomial probabi...

    Text Solution

    |

  9. Let |veca|=3, |vecb|=4, |vecc|=5 and vecaxx(vecaxxvecc)+4vecb=0, then ...

    Text Solution

    |

  10. If A=[(2, 2),(9,4)] and A^(2)+aA+bI=O. Then a+2b is equal to (where, I...

    Text Solution

    |

  11. The value of the definite integral I=int(-1)^(1)ln((2-sin^(3)x)/(2+sin...

    Text Solution

    |

  12. The length of the perpendicular (in units) from the point (1, 2, 4) on...

    Text Solution

    |

  13. Let the images of the point A(2, 3) about the lines y=x and y=mx are P...

    Text Solution

    |

  14. If the sum of the series 1+(3)/(2)+(5)/(4)+(7)/(8)+……+((2n-1))/((2)^(n...

    Text Solution

    |

  15. The focus and corresponding directrix of an ellipse are (3, 4) and x+y...

    Text Solution

    |

  16. If ((4i^(3)-i)/(2i+1))^(2)=r(cos theta+isin theta), then cos theta+sin...

    Text Solution

    |

  17. The distance between the focus and the directrix of the conic (sqrt(3x...

    Text Solution

    |

  18. If the direction ratios of a line are 1+lambda, 2-lambda, 4 and if it ...

    Text Solution

    |

  19. If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)...

    Text Solution

    |

  20. The volume of the greatest cone obtained by rotating a right - angled ...

    Text Solution

    |