Home
Class 12
MATHS
The value of lim(xrarr-oo)(x^(2)tan((1)/...

The value of `lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1))` is equal to

A

`1`

B

`(1)/(2)`

C

`-1`

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to -\infty} \frac{x^2 \tan\left(\frac{1}{x}\right)}{\sqrt{4x^2 - x + 1}}, \] we can follow these steps: ### Step 1: Substitute \( x = \frac{1}{n} \) As \( x \to -\infty \), we can substitute \( x = -n \) where \( n \to \infty \). Therefore, we rewrite the limit as: \[ \lim_{n \to \infty} \frac{(-n)^2 \tan\left(-\frac{1}{n}\right)}{\sqrt{4(-n)^2 - (-n) + 1}}. \] ### Step 2: Simplify the expression Now, we simplify the expression: 1. The numerator becomes: \[ n^2 \tan\left(-\frac{1}{n}\right) = -n^2 \tan\left(\frac{1}{n}\right). \] Using the small angle approximation \( \tan(x) \approx x \) for small \( x \), we have: \[ \tan\left(\frac{1}{n}\right) \approx \frac{1}{n}. \] Thus, the numerator simplifies to: \[ -n^2 \cdot \frac{1}{n} = -n. \] 2. The denominator becomes: \[ \sqrt{4n^2 + n + 1}. \] For large \( n \), this can be approximated as: \[ \sqrt{4n^2} = 2n. \] ### Step 3: Substitute back into the limit Now substituting back into the limit, we have: \[ \lim_{n \to \infty} \frac{-n}{2n} = \lim_{n \to \infty} \frac{-1}{2} = -\frac{1}{2}. \] ### Conclusion Thus, the value of the limit is: \[ \boxed{-\frac{1}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 52

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

lim_(x rarr-oo)(x^(2)*tan((1)/(x)))/(sqrt(8x^(2)+7x+1)) is

lim_(x rarr-oo)(x^(2)*sin((1)/(x)))/(sqrt(9x^(2)+x+1)) is equal to

The value of lim_(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1)) equals

The value of lim_(x rarr oo)(int_(0)^(x)(tan^(-1)x)^(2))/(sqrt(x^(2)+1))dx

The value of lim_(x rarr oo)(x+2)tan^(-1)(x+2)-(x tan^(-1)x) is

NTA MOCK TESTS-NTA JEE MOCK TEST 53-MATHEMATICS
  1. The average weight of students in a class of 35 students is 40 kg. If ...

    Text Solution

    |

  2. Two straight roads OA and OB intersect at O. A tower is situated withi...

    Text Solution

    |

  3. The value of lim(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is eq...

    Text Solution

    |

  4. The range of the function f(x)=sin^(-1)[x^(2)-(1)/(3)]-cos^(-1)[x^(2)+...

    Text Solution

    |

  5. The point on the curve 6y=4x^(3)-3x^(2), the tangent at which makes an...

    Text Solution

    |

  6. Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the con...

    Text Solution

    |

  7. The solution of the differential equation x(dy)/(dx)=y ln ((y^(2))/(x^...

    Text Solution

    |

  8. Let P be the image of the point (3, 1, 7) with respect to the plane x-...

    Text Solution

    |

  9. A person goes to the office either by a car, or scooter, or bus, the p...

    Text Solution

    |

  10. The solution of the system of equations x+(cosalpha)y=1 and (cosalpha)...

    Text Solution

    |

  11. sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is equal to :

    Text Solution

    |

  12. If the complex numbers sinx+icos 2x and cosx-isin2x are conjugate of e...

    Text Solution

    |

  13. A variable line through the point ((6)/(5),(6)/(5)) cuts the coordinat...

    Text Solution

    |

  14. The value of tan63^(@)-cot63^(@) is equal to

    Text Solution

    |

  15. The locus of a point which moves such that the difference of its dista...

    Text Solution

    |

  16. If the lengths of the sides of a right- angled triangle ABC, right ang...

    Text Solution

    |

  17. If f(0)=0, f(3)=3 and f'(3)=4, then the value of int(0)^(1)xf'' (3x)dx...

    Text Solution

    |

  18. The minimum value of x which satisfies the inequality sin^(-1)x ge cos...

    Text Solution

    |

  19. Let veca be a unit vector coplanar with hati-hatj+2hatk and 2hati-hatj...

    Text Solution

    |

  20. A tangent and a normal are drawn at the point P(8, 8) on the parabola ...

    Text Solution

    |