Home
Class 12
MATHS
Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C suc...

Let `int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C` such that `f(0)=0` and C is the constant of integration, then the value of `f(1)` is

A

`(1)/(sqrt2)+(1)/(2)ln(1+sqrt2)`

B

`(1)/(2)+(1)/(sqrt2)ln(1+sqrt2)`

C

`(1)/(2)+(1)/(2)lnsqrt2+1`

D

`(1)/(sqrt2)+(1)/(2)(1+ln(1+sqrt2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral: \[ \int \frac{dx}{\sqrt{x^2 + 1} - x} = f(x) + C \] where \( f(0) = 0 \) and \( C \) is the constant of integration. We are tasked with finding \( f(1) \). ### Step 1: Rationalize the Denominator To simplify the integral, we can rationalize the denominator: \[ \frac{1}{\sqrt{x^2 + 1} - x} \cdot \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x} = \frac{\sqrt{x^2 + 1} + x}{(\sqrt{x^2 + 1})^2 - x^2} \] The denominator simplifies as follows: \[ (\sqrt{x^2 + 1})^2 - x^2 = x^2 + 1 - x^2 = 1 \] Thus, we have: \[ \int \frac{dx}{\sqrt{x^2 + 1} - x} = \int (\sqrt{x^2 + 1} + x) \, dx \] ### Step 2: Integrate the Expression Now we can integrate: \[ \int (\sqrt{x^2 + 1} + x) \, dx = \int \sqrt{x^2 + 1} \, dx + \int x \, dx \] The second integral is straightforward: \[ \int x \, dx = \frac{x^2}{2} \] For the first integral, we can use the formula for the integral of \( \sqrt{x^2 + a^2} \): \[ \int \sqrt{x^2 + 1} \, dx = \frac{x}{2} \sqrt{x^2 + 1} + \frac{1}{2} \ln |x + \sqrt{x^2 + 1}| \] Combining these results, we have: \[ \int (\sqrt{x^2 + 1} + x) \, dx = \frac{x}{2} \sqrt{x^2 + 1} + \frac{1}{2} \ln |x + \sqrt{x^2 + 1}| + \frac{x^2}{2} + C \] ### Step 3: Define \( f(x) \) Thus, we can express \( f(x) \) as: \[ f(x) = \frac{x}{2} \sqrt{x^2 + 1} + \frac{1}{2} \ln |x + \sqrt{x^2 + 1}| + \frac{x^2}{2} \] ### Step 4: Determine the Constant \( C \) We were given that \( f(0) = 0 \): \[ f(0) = \frac{0}{2} \sqrt{0^2 + 1} + \frac{1}{2} \ln |0 + \sqrt{0^2 + 1}| + \frac{0^2}{2} + C = 0 \] This simplifies to: \[ 0 + \frac{1}{2} \ln(1) + 0 + C = 0 \] Since \( \ln(1) = 0 \), we find \( C = 0 \). ### Step 5: Calculate \( f(1) \) Now we need to find \( f(1) \): \[ f(1) = \frac{1}{2} \sqrt{1^2 + 1} + \frac{1}{2} \ln |1 + \sqrt{1^2 + 1}| + \frac{1^2}{2} \] Calculating each term: 1. \( \frac{1}{2} \sqrt{2} = \frac{\sqrt{2}}{2} \) 2. \( \frac{1}{2} \ln(1 + \sqrt{2}) \) 3. \( \frac{1}{2} \) Putting it all together: \[ f(1) = \frac{\sqrt{2}}{2} + \frac{1}{2} \ln(1 + \sqrt{2}) + \frac{1}{2} \] Combining the constant terms: \[ f(1) = \frac{\sqrt{2}}{2} + \frac{1}{2} + \frac{1}{2} \ln(1 + \sqrt{2}) \] ### Final Answer Thus, the value of \( f(1) \) is: \[ f(1) = \frac{1 + \sqrt{2}}{2} + \frac{1}{2} \ln(1 + \sqrt{2}) \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 52

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (where, x gt0 and C is the constant of integration) and f(1)=(-1)/(3) , then the value of f(9) is equal to

If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integration), then the range of y=f(x), AA x in R-{-1, 0} is

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

NTA MOCK TESTS-NTA JEE MOCK TEST 53-MATHEMATICS
  1. The average weight of students in a class of 35 students is 40 kg. If ...

    Text Solution

    |

  2. Two straight roads OA and OB intersect at O. A tower is situated withi...

    Text Solution

    |

  3. The value of lim(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is eq...

    Text Solution

    |

  4. The range of the function f(x)=sin^(-1)[x^(2)-(1)/(3)]-cos^(-1)[x^(2)+...

    Text Solution

    |

  5. The point on the curve 6y=4x^(3)-3x^(2), the tangent at which makes an...

    Text Solution

    |

  6. Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the con...

    Text Solution

    |

  7. The solution of the differential equation x(dy)/(dx)=y ln ((y^(2))/(x^...

    Text Solution

    |

  8. Let P be the image of the point (3, 1, 7) with respect to the plane x-...

    Text Solution

    |

  9. A person goes to the office either by a car, or scooter, or bus, the p...

    Text Solution

    |

  10. The solution of the system of equations x+(cosalpha)y=1 and (cosalpha)...

    Text Solution

    |

  11. sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is equal to :

    Text Solution

    |

  12. If the complex numbers sinx+icos 2x and cosx-isin2x are conjugate of e...

    Text Solution

    |

  13. A variable line through the point ((6)/(5),(6)/(5)) cuts the coordinat...

    Text Solution

    |

  14. The value of tan63^(@)-cot63^(@) is equal to

    Text Solution

    |

  15. The locus of a point which moves such that the difference of its dista...

    Text Solution

    |

  16. If the lengths of the sides of a right- angled triangle ABC, right ang...

    Text Solution

    |

  17. If f(0)=0, f(3)=3 and f'(3)=4, then the value of int(0)^(1)xf'' (3x)dx...

    Text Solution

    |

  18. The minimum value of x which satisfies the inequality sin^(-1)x ge cos...

    Text Solution

    |

  19. Let veca be a unit vector coplanar with hati-hatj+2hatk and 2hati-hatj...

    Text Solution

    |

  20. A tangent and a normal are drawn at the point P(8, 8) on the parabola ...

    Text Solution

    |