Home
Class 12
MATHS
The solution of the system of equations ...

The solution of the system of equations `x+(cosalpha)y=1 and (cosalpha)x+4y=2` satisfy `x ge(4)/(5)` and `yle(1)/(2)`, then the value of `alpha` can lie in the inverval

A

`alpha in [(pi)/(4),(pi)/(3)]`

B

`alpha in [0,(pi)/(6)]`

C

`alpha in [(pi)/(6),(pi)/(3)]`

D

`alpha in [(pi)/(3),(pi)/(2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( x + (\cos \alpha)y = 1 \) 2. \( (\cos \alpha)x + 4y = 2 \) we will use Cramer's rule to find the values of \( x \) and \( y \) in terms of \( \alpha \). ### Step 1: Write the Coefficient Matrix The coefficient matrix \( A \) is given by: \[ A = \begin{pmatrix} 1 & \cos \alpha \\ \cos \alpha & 4 \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( A \) The determinant \( \Delta \) of the matrix \( A \) is calculated as: \[ \Delta = 1 \cdot 4 - (\cos \alpha)(\cos \alpha) = 4 - \cos^2 \alpha \] ### Step 3: Calculate \( \Delta_1 \) and \( \Delta_2 \) Now we calculate \( \Delta_1 \) and \( \Delta_2 \): - For \( \Delta_1 \), replace the first column with the right-hand side values: \[ \Delta_1 = \begin{vmatrix} 1 & \cos \alpha \\ 2 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot \cos \alpha = 4 - 2 \cos \alpha \] - For \( \Delta_2 \), replace the second column with the right-hand side values: \[ \Delta_2 = \begin{vmatrix} 1 & 1 \\ \cos \alpha & 2 \end{vmatrix} = 1 \cdot 2 - 1 \cdot \cos \alpha = 2 - \cos \alpha \] ### Step 4: Find \( x \) and \( y \) Using Cramer's rule: \[ x = \frac{\Delta_1}{\Delta} = \frac{4 - 2 \cos \alpha}{4 - \cos^2 \alpha} \] \[ y = \frac{\Delta_2}{\Delta} = \frac{2 - \cos \alpha}{4 - \cos^2 \alpha} \] ### Step 5: Apply the Given Conditions We have the conditions: 1. \( x \geq \frac{4}{5} \) 2. \( y \leq \frac{1}{2} \) #### Condition 1: \( x \geq \frac{4}{5} \) \[ \frac{4 - 2 \cos \alpha}{4 - \cos^2 \alpha} \geq \frac{4}{5} \] Cross-multiplying gives: \[ 5(4 - 2 \cos \alpha) \geq 4(4 - \cos^2 \alpha) \] Expanding both sides: \[ 20 - 10 \cos \alpha \geq 16 - 4 \cos^2 \alpha \] Rearranging gives: \[ 4 \cos^2 \alpha - 10 \cos \alpha + 4 \geq 0 \] #### Condition 2: \( y \leq \frac{1}{2} \) \[ \frac{2 - \cos \alpha}{4 - \cos^2 \alpha} \leq \frac{1}{2} \] Cross-multiplying gives: \[ 2(2 - \cos \alpha) \leq 4 - \cos^2 \alpha \] Expanding both sides: \[ 4 - 2 \cos \alpha \leq 4 - \cos^2 \alpha \] Rearranging gives: \[ \cos^2 \alpha - 2 \cos \alpha \geq 0 \] Factoring gives: \[ \cos \alpha (\cos \alpha - 2) \geq 0 \] ### Step 6: Solve the Inequalities 1. From \( 4 \cos^2 \alpha - 10 \cos \alpha + 4 \geq 0 \), use the quadratic formula to find the roots: \[ \cos \alpha = \frac{10 \pm \sqrt{100 - 64}}{8} = \frac{10 \pm 6}{8} \] This gives \( \cos \alpha = 2 \) and \( \cos \alpha = \frac{1}{2} \). 2. From \( \cos \alpha (\cos \alpha - 2) \geq 0 \), the solution is \( \cos \alpha \leq 0 \) or \( \cos \alpha \geq 2 \) (not possible since \( \cos \alpha \) cannot exceed 1). ### Step 7: Determine the Interval for \( \alpha \) The valid range for \( \alpha \) based on \( \cos \alpha \) is: \[ \frac{1}{2} \leq \cos \alpha \leq 1 \] This corresponds to the angles: \[ \alpha \in [\frac{\pi}{3}, \frac{\pi}{2}] \] ### Final Answer Thus, the value of \( \alpha \) can lie in the interval: \[ \boxed{[\frac{\pi}{3}, \frac{\pi}{2}]} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 52

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The solution of the system of equations is x-y+2z=1,2y-3z=1 and 3x-2y+4y=2 is

Check if x=2, y=1 is a solution of the system of equations: 3x-2y=4, 2x+y=5

The number of solutions of the system of equations: 2x+y-z=7,\ \ x-3y+2z=1,\ \ x+4y-3z=5 is (a) 3 (b) 2 (c) 1 (d) 0

The system of lienar equations x-y+z=1 x+y-z=3 x-4y+4z=alpha has

Draw the graph of the solution set of the system of inequations 2x+3yle 4, xge0and y ge 0.

The most general values of x satisfying the equation sinx=sinalpha and costheta=cosalpha is

The values of x satisfying the system of equations 2^(sin x-cos y)=1,16^(sin^(2)x+cos^(2)y)=4 are given by :

If x=2alpha+1\ a n d\ y=alpha-1 is a solution of the equation 2x-3y+5=0 , find the value of alpha

NTA MOCK TESTS-NTA JEE MOCK TEST 53-MATHEMATICS
  1. The average weight of students in a class of 35 students is 40 kg. If ...

    Text Solution

    |

  2. Two straight roads OA and OB intersect at O. A tower is situated withi...

    Text Solution

    |

  3. The value of lim(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is eq...

    Text Solution

    |

  4. The range of the function f(x)=sin^(-1)[x^(2)-(1)/(3)]-cos^(-1)[x^(2)+...

    Text Solution

    |

  5. The point on the curve 6y=4x^(3)-3x^(2), the tangent at which makes an...

    Text Solution

    |

  6. Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the con...

    Text Solution

    |

  7. The solution of the differential equation x(dy)/(dx)=y ln ((y^(2))/(x^...

    Text Solution

    |

  8. Let P be the image of the point (3, 1, 7) with respect to the plane x-...

    Text Solution

    |

  9. A person goes to the office either by a car, or scooter, or bus, the p...

    Text Solution

    |

  10. The solution of the system of equations x+(cosalpha)y=1 and (cosalpha)...

    Text Solution

    |

  11. sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is equal to :

    Text Solution

    |

  12. If the complex numbers sinx+icos 2x and cosx-isin2x are conjugate of e...

    Text Solution

    |

  13. A variable line through the point ((6)/(5),(6)/(5)) cuts the coordinat...

    Text Solution

    |

  14. The value of tan63^(@)-cot63^(@) is equal to

    Text Solution

    |

  15. The locus of a point which moves such that the difference of its dista...

    Text Solution

    |

  16. If the lengths of the sides of a right- angled triangle ABC, right ang...

    Text Solution

    |

  17. If f(0)=0, f(3)=3 and f'(3)=4, then the value of int(0)^(1)xf'' (3x)dx...

    Text Solution

    |

  18. The minimum value of x which satisfies the inequality sin^(-1)x ge cos...

    Text Solution

    |

  19. Let veca be a unit vector coplanar with hati-hatj+2hatk and 2hati-hatj...

    Text Solution

    |

  20. A tangent and a normal are drawn at the point P(8, 8) on the parabola ...

    Text Solution

    |