Home
Class 12
MATHS
Let veca be a unit vector coplanar with ...

Let `veca` be a unit vector coplanar with `hati-hatj+2hatk` and `2hati-hatj+hatk` such that `veca` is perpendicular to `hati-2hatj+hatk`. If the projecton of `veca` along `hati-hatj+2hatk` is `lambda`, then the value of `(1)/(lambda^(2))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will follow the instructions provided in the video transcript and clarify each step. ### Step 1: Define the vectors Let: - \(\vec{a}\) be the unit vector we need to find. - \(\vec{\alpha} = \hat{i} - \hat{j} + 2\hat{k}\) - \(\vec{\beta} = 2\hat{i} - \hat{j} + \hat{k}\) - \(\vec{\gamma} = \hat{i} - 2\hat{j} + \hat{k}\) ### Step 2: Calculate the dot products We need to find the dot products of \(\vec{\gamma}\) with \(\vec{\alpha}\) and \(\vec{\beta}\). 1. **Calculate \(\vec{\gamma} \cdot \vec{\beta}\)**: \[ \vec{\gamma} \cdot \vec{\beta} = (1)(2) + (-2)(-1) + (1)(1) = 2 + 2 + 1 = 5 \] 2. **Calculate \(\vec{\gamma} \cdot \vec{\alpha}\)**: \[ \vec{\gamma} \cdot \vec{\alpha} = (1)(1) + (-2)(-1) + (1)(2) = 1 + 2 + 2 = 5 \] ### Step 3: Formulate the expression for \(\vec{a}\) Using the results from the dot products, we can express \(\vec{a}\) as: \[ \vec{a} = \frac{5\vec{\alpha} - 5\vec{\beta}}{||5\vec{\alpha} - 5\vec{\beta}||} \] ### Step 4: Calculate \(5\vec{\alpha} - 5\vec{\beta}\) First, calculate \(\vec{\alpha} - \vec{\beta}\): \[ \vec{\alpha} - \vec{\beta} = (\hat{i} - \hat{j} + 2\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) = -\hat{i} + 0\hat{j} + \hat{k} = -\hat{i} + \hat{k} \] Thus, \[ 5(\vec{\alpha} - \vec{\beta}) = 5(-\hat{i} + \hat{k}) = -5\hat{i} + 5\hat{k} \] ### Step 5: Calculate the magnitude Now we need to find the magnitude of \(-5\hat{i} + 5\hat{k}\): \[ ||-5\hat{i} + 5\hat{k}|| = \sqrt{(-5)^2 + 0^2 + (5)^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2} \] ### Step 6: Write the unit vector \(\vec{a}\) Now we can write \(\vec{a}\): \[ \vec{a} = \frac{-5\hat{i} + 5\hat{k}}{5\sqrt{2}} = \frac{-\hat{i} + \hat{k}}{\sqrt{2}} \] ### Step 7: Calculate the projection of \(\vec{a}\) on \(\vec{\alpha}\) The projection of \(\vec{a}\) on \(\vec{\alpha}\) is given by: \[ \text{proj}_{\vec{\alpha}} \vec{a} = \frac{\vec{a} \cdot \vec{\alpha}}{||\vec{\alpha}||} \] 1. **Calculate \(\vec{a} \cdot \vec{\alpha}\)**: \[ \vec{a} \cdot \vec{\alpha} = \left(\frac{-1}{\sqrt{2}}\right)(1) + \left(0\right)(-1) + \left(\frac{1}{\sqrt{2}}\right)(2) = \frac{-1}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] 2. **Calculate \(||\vec{\alpha}||\)**: \[ ||\vec{\alpha}|| = \sqrt{1^2 + (-1)^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] 3. **Calculate the projection**: \[ \text{proj}_{\vec{\alpha}} \vec{a} = \frac{\frac{1}{\sqrt{2}}}{\sqrt{6}} = \frac{1}{\sqrt{12}} = \frac{1}{2\sqrt{3}} \] ### Step 8: Find \(\lambda\) and calculate \(\frac{1}{\lambda^2}\) Let \(\lambda = \frac{1}{\sqrt{12}}\). Therefore: \[ \lambda^2 = \frac{1}{12} \] Thus, \[ \frac{1}{\lambda^2} = 12 \] ### Final Answer The value of \(\frac{1}{\lambda^2}\) is \(12\).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 52

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The unit vectors perpendicular to vecA=2hati+3hatj+hatk and vecB=hati-hatj+hatk is

Find vecA xx vecB if vecA = hati - 2hatj + 4hatk and vecB = 2hati - hatj + 2hatk

Given veca = hati-hatj+hatk and vecb = 2hati-4hatj-3hatk , find the magnitude of veca

A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2hatk and vecb = hati + hatj + hatk, and perpendicular to the vector vecc = hati + hatj +hatk is

For the value of a, vecA = 2hati +a hatj +hatk is prependicular to vecB = 4hati - 2hatj- 2hatk ?

Find vecB xx vecA if vecA = 3hati - 2hatj + 6hatk and vecB = hati - hatj + hatk .

Find the unit vector perpendicular to ltbr. vecA=3hati+2hatj-hatk and vecB=hati-hatj+hatk

If veca = 2hati+2hatj+3hatk, vecb = -hati+2hatj+hatk and vecc = 3hati+hatj such that veca+lambdavecb is perpendicular to vecc then find the value of lambda .

The two vectors {veca = 2hati + hatj + 3hatk, vecb = 4hati - lambda hatj + 6hatk} are parallel if lambda is equal to:

NTA MOCK TESTS-NTA JEE MOCK TEST 53-MATHEMATICS
  1. The average weight of students in a class of 35 students is 40 kg. If ...

    Text Solution

    |

  2. Two straight roads OA and OB intersect at O. A tower is situated withi...

    Text Solution

    |

  3. The value of lim(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is eq...

    Text Solution

    |

  4. The range of the function f(x)=sin^(-1)[x^(2)-(1)/(3)]-cos^(-1)[x^(2)+...

    Text Solution

    |

  5. The point on the curve 6y=4x^(3)-3x^(2), the tangent at which makes an...

    Text Solution

    |

  6. Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the con...

    Text Solution

    |

  7. The solution of the differential equation x(dy)/(dx)=y ln ((y^(2))/(x^...

    Text Solution

    |

  8. Let P be the image of the point (3, 1, 7) with respect to the plane x-...

    Text Solution

    |

  9. A person goes to the office either by a car, or scooter, or bus, the p...

    Text Solution

    |

  10. The solution of the system of equations x+(cosalpha)y=1 and (cosalpha)...

    Text Solution

    |

  11. sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is equal to :

    Text Solution

    |

  12. If the complex numbers sinx+icos 2x and cosx-isin2x are conjugate of e...

    Text Solution

    |

  13. A variable line through the point ((6)/(5),(6)/(5)) cuts the coordinat...

    Text Solution

    |

  14. The value of tan63^(@)-cot63^(@) is equal to

    Text Solution

    |

  15. The locus of a point which moves such that the difference of its dista...

    Text Solution

    |

  16. If the lengths of the sides of a right- angled triangle ABC, right ang...

    Text Solution

    |

  17. If f(0)=0, f(3)=3 and f'(3)=4, then the value of int(0)^(1)xf'' (3x)dx...

    Text Solution

    |

  18. The minimum value of x which satisfies the inequality sin^(-1)x ge cos...

    Text Solution

    |

  19. Let veca be a unit vector coplanar with hati-hatj+2hatk and 2hati-hatj...

    Text Solution

    |

  20. A tangent and a normal are drawn at the point P(8, 8) on the parabola ...

    Text Solution

    |