Home
Class 12
MATHS
If the line y=x+c touches the hyperbola ...

If the line `y=x+c` touches the hyperbola `(x^(2))/(9)-(y^(2))/(5)=1` at the point `P(h, k),` then `(h, k)` can be equal to

A

`((9)/(2), -(5)/(2))`

B

`((9)/(2),(5)/(2))`

C

`(-(5)/(2),-(9)/(2))`

D

`((5)/(2),-(9)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the point \( (h, k) \) where the line \( y = x + c \) touches the hyperbola given by the equation \[ \frac{x^2}{9} - \frac{y^2}{5} = 1. \] ### Step-by-step Solution: 1. **Identify the parameters of the hyperbola**: The hyperbola is in the form \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \). Here, we can see that \( a^2 = 9 \) and \( b^2 = 5 \). Thus, \( a = 3 \) and \( b = \sqrt{5} \). 2. **Write the equation of the tangent in parametric form**: The equation of the tangent to the hyperbola in parametric form is given by: \[ \frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1. \] Substituting the values of \( a \) and \( b \): \[ \frac{x \sec \theta}{3} - \frac{y \tan \theta}{\sqrt{5}} = 1. \] 3. **Set the tangent equal to the line**: The line given in the problem is \( y = x + c \). We can rewrite this in the form suitable for comparison: \[ y - x - c = 0. \] We need to find the point where this line is tangent to the hyperbola. 4. **Equate the slopes**: The slope of the line \( y = x + c \) is \( 1 \). The slope of the tangent line from the hyperbola can be found from the parametric form: \[ \frac{\sqrt{5} \sec \theta}{3 \tan \theta} = 1. \] This implies: \[ \sqrt{5} \sec \theta = 3 \tan \theta. \] 5. **Express sec and tan in terms of sin and cos**: We know that \( \sec \theta = \frac{1}{\cos \theta} \) and \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Substituting these into the equation gives: \[ \sqrt{5} \cdot \frac{1}{\cos \theta} = 3 \cdot \frac{\sin \theta}{\cos \theta}. \] Cancelling \( \cos \theta \) (assuming \( \cos \theta \neq 0 \)): \[ \sqrt{5} = 3 \sin \theta. \] Thus, we find: \[ \sin \theta = \frac{\sqrt{5}}{3}. \] 6. **Find the value of \( \cos \theta \)**: Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \left(\frac{\sqrt{5}}{3}\right)^2 + \cos^2 \theta = 1 \implies \frac{5}{9} + \cos^2 \theta = 1 \implies \cos^2 \theta = 1 - \frac{5}{9} = \frac{4}{9}. \] Therefore, \[ \cos \theta = \frac{2}{3}. \] 7. **Calculate \( \sec \theta \) and \( \tan \theta \)**: \[ \sec \theta = \frac{1}{\cos \theta} = \frac{3}{2}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{\sqrt{5}}{3}}{\frac{2}{3}} = \frac{\sqrt{5}}{2}. \] 8. **Substitute into the tangent equation**: Now we substitute \( \sec \theta \) and \( \tan \theta \) into the tangent equation: \[ \frac{x \cdot \frac{3}{2}}{3} - \frac{y \cdot \frac{\sqrt{5}}{2}}{\sqrt{5}} = 1. \] Simplifying gives: \[ \frac{x}{2} - \frac{y}{2} = 1 \implies x - y = 2. \] 9. **Find the coordinates of the point of tangency**: The point of tangency \( (h, k) \) must satisfy both the line \( y = x + c \) and the hyperbola. Substituting \( y = x + c \) into the hyperbola equation: \[ \frac{x^2}{9} - \frac{(x + c)^2}{5} = 1. \] This leads to a quadratic equation in \( x \). For the line to be tangent to the hyperbola, the discriminant of this quadratic must be zero. 10. **Solve for \( (h, k) \)**: After solving, we find that the coordinates of the point of tangency are: \[ \left( \frac{9}{2}, \frac{5}{2} \right). \] ### Final Answer: Thus, the point \( (h, k) \) can be equal to \( \left( \frac{9}{2}, \frac{5}{2} \right) \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The line 4sqrt(2x)-5y=40 touches the hyperbola (x^(2))/(100)-(y^(2)_)/(64) =1 at the point

The line y = 4x + c touches the hyperbola x^(2) - y^(2) = 1 if

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then lambda =

The line y=x+2 touches the hyperbola 5x^2-9y^2=45 at the point

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then the value of lambda is

If the line 2x+3y+k=0 touches the parabola x^(2)=108y then k =

If the line y=sqrt(3)x+k touches the circle x^(2)+y^(2)=16, then find the value of k

If the line 5x+12y-9=0 is a tangent to the hyperbola x^(2)-9y^(2)=9 then its point of contact is

NTA MOCK TESTS-NTA JEE MOCK TEST 55-MATHEMATICS
  1. A stationary balloon is observed from three points A, B and C on the p...

    Text Solution

    |

  2. The number of solutions of the equation sin^(-1)x=(sinx)^(-1) is/are

    Text Solution

    |

  3. The mean of n observation is barX. If the first observation is increas...

    Text Solution

    |

  4. If the normal at P(18, 12) to the parabola y^(2)=8x cuts it again at Q...

    Text Solution

    |

  5. If f:R rarrR is a function, then f is

    Text Solution

    |

  6. The possible value of the ordered triplet (a, b, c) such that the func...

    Text Solution

    |

  7. If the line y=x+c touches the hyperbola (x^(2))/(9)-(y^(2))/(5)=1 at t...

    Text Solution

    |

  8. The solution of the differential equation (dy)/(dx)=(y^(2)+xlnx)/(2xy)...

    Text Solution

    |

  9. The value of intsin^(3)x sqrt(cosx)dx is equal to (where, c is the con...

    Text Solution

    |

  10. A random variable X follows binomial probability distribution with pro...

    Text Solution

    |

  11. Equation of the plane passing through the point (1, -1, 3), parallel t...

    Text Solution

    |

  12. If the system of equations x+y+z=6, x+2y+lambdaz=10 and x+2y+3z=mu has...

    Text Solution

    |

  13. The number of five digit numbers that contains 7 exactly once is equal...

    Text Solution

    |

  14. The points (-2, -1), (1, 0), (4, 3) and (1, 2) are

    Text Solution

    |

  15. The value of a such that the area bounded by the curve y=x^(2)+2ax+3a^...

    Text Solution

    |

  16. Number of common points to the curves C(1){(-1+2cos alpha, 2 sin alpha...

    Text Solution

    |

  17. If the magnitude of the projection of the vector hati-hatj+2hatk on th...

    Text Solution

    |

  18. The value of int(0)^(2)((x^(2)-2x+4)sin(x-1))/(2x^(2)-4x+5)dx is equal...

    Text Solution

    |

  19. If f:R rarr R is a function such that f(5x)+f(5x+1)+f(5x+2)=0, AA x in...

    Text Solution

    |

  20. If 0ltalpha,betaltpi and cos alpha+cos beta -cos(alpha+beta)=(3)/(2), ...

    Text Solution

    |