Home
Class 12
MATHS
If the magnitude of the projection of th...

If the magnitude of the projection of the vector `hati-hatj+2hatk` on the vector perpendicular to the plane containing the vectors `2hati0hatj+3hatk and hati-hatj-2hatk` is k, then the value of `(1)/(k^(2))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{k^2} \), where \( k \) is the magnitude of the projection of the vector \( \mathbf{A} = \hat{i} - \hat{j} + 2\hat{k} \) on the vector \( \mathbf{B} \), which is perpendicular to the plane formed by the vectors \( \mathbf{C} = 2\hat{i} + 0\hat{j} + 3\hat{k} \) and \( \mathbf{D} = \hat{i} - \hat{j} - 2\hat{k} \). ### Step 1: Find the normal vector to the plane To find the vector \( \mathbf{B} \) that is perpendicular to the plane formed by \( \mathbf{C} \) and \( \mathbf{D} \), we can use the cross product: \[ \mathbf{B} = \mathbf{C} \times \mathbf{D} \] Calculating the cross product: \[ \mathbf{C} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \] Using the determinant to find the cross product: \[ \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 3 \\ 1 & -1 & -2 \end{vmatrix} \] Calculating the determinant: \[ \mathbf{B} = \hat{i} \begin{vmatrix} 0 & 3 \\ -1 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 0 \\ 1 & -1 \end{vmatrix} \] Calculating each of the minors: \[ \begin{vmatrix} 0 & 3 \\ -1 & -2 \end{vmatrix} = (0)(-2) - (3)(-1) = 3 \] \[ \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = (2)(-2) - (3)(1) = -4 - 3 = -7 \] \[ \begin{vmatrix} 2 & 0 \\ 1 & -1 \end{vmatrix} = (2)(-1) - (0)(1) = -2 \] Thus, \[ \mathbf{B} = 3\hat{i} + 7\hat{j} - 2\hat{k} \] ### Step 2: Calculate the projection of \( \mathbf{A} \) onto \( \mathbf{B} \) The formula for the projection of vector \( \mathbf{A} \) onto vector \( \mathbf{B} \) is given by: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|^2} \mathbf{B} \] First, we need to calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \): \[ \mathbf{A} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 \\ 7 \\ -2 \end{pmatrix} \] \[ \mathbf{A} \cdot \mathbf{B} = (1)(3) + (-1)(7) + (2)(-2) = 3 - 7 - 4 = -8 \] Next, we find the magnitude squared of \( \mathbf{B} \): \[ |\mathbf{B}|^2 = 3^2 + 7^2 + (-2)^2 = 9 + 49 + 4 = 62 \] Thus, the projection is: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{-8}{62} \mathbf{B} = \frac{-4}{31} \mathbf{B} \] ### Step 3: Find the magnitude of the projection The magnitude of the projection is: \[ k = \left| \text{proj}_{\mathbf{B}} \mathbf{A} \right| = \left| \frac{-4}{31} \right| |\mathbf{B}| \] Calculating \( |\mathbf{B}| \): \[ |\mathbf{B}| = \sqrt{62} \] Thus, \[ k = \frac{4}{31} \sqrt{62} \] ### Step 4: Calculate \( \frac{1}{k^2} \) Now we compute \( k^2 \): \[ k^2 = \left( \frac{4}{31} \sqrt{62} \right)^2 = \frac{16 \cdot 62}{31^2} = \frac{992}{961} \] Finally, we find \( \frac{1}{k^2} \): \[ \frac{1}{k^2} = \frac{961}{992} \] ### Final Answer Thus, the value of \( \frac{1}{k^2} \) is \( \frac{961}{992} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The magnitude of the projection of the vector 2hati+3hatj+hatk on the vector perpendicular to the plane containing the vectors hati+hatj+hatk" and "hati+2hatj+3hatk , is

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find the unit vector perpendicular to each of the vectors 6hati+2hatj+3hatk and 3hati-2hatk

Find the projection of the vector hati-2hatj+hatk on the vector 4hati-4hatj+7hatk .

A unit vector perpendicular to both the vectors 2hati-2hatj+hatk and 3hati+4hatj-5hatk , is

NTA MOCK TESTS-NTA JEE MOCK TEST 55-MATHEMATICS
  1. A stationary balloon is observed from three points A, B and C on the p...

    Text Solution

    |

  2. The number of solutions of the equation sin^(-1)x=(sinx)^(-1) is/are

    Text Solution

    |

  3. The mean of n observation is barX. If the first observation is increas...

    Text Solution

    |

  4. If the normal at P(18, 12) to the parabola y^(2)=8x cuts it again at Q...

    Text Solution

    |

  5. If f:R rarrR is a function, then f is

    Text Solution

    |

  6. The possible value of the ordered triplet (a, b, c) such that the func...

    Text Solution

    |

  7. If the line y=x+c touches the hyperbola (x^(2))/(9)-(y^(2))/(5)=1 at t...

    Text Solution

    |

  8. The solution of the differential equation (dy)/(dx)=(y^(2)+xlnx)/(2xy)...

    Text Solution

    |

  9. The value of intsin^(3)x sqrt(cosx)dx is equal to (where, c is the con...

    Text Solution

    |

  10. A random variable X follows binomial probability distribution with pro...

    Text Solution

    |

  11. Equation of the plane passing through the point (1, -1, 3), parallel t...

    Text Solution

    |

  12. If the system of equations x+y+z=6, x+2y+lambdaz=10 and x+2y+3z=mu has...

    Text Solution

    |

  13. The number of five digit numbers that contains 7 exactly once is equal...

    Text Solution

    |

  14. The points (-2, -1), (1, 0), (4, 3) and (1, 2) are

    Text Solution

    |

  15. The value of a such that the area bounded by the curve y=x^(2)+2ax+3a^...

    Text Solution

    |

  16. Number of common points to the curves C(1){(-1+2cos alpha, 2 sin alpha...

    Text Solution

    |

  17. If the magnitude of the projection of the vector hati-hatj+2hatk on th...

    Text Solution

    |

  18. The value of int(0)^(2)((x^(2)-2x+4)sin(x-1))/(2x^(2)-4x+5)dx is equal...

    Text Solution

    |

  19. If f:R rarr R is a function such that f(5x)+f(5x+1)+f(5x+2)=0, AA x in...

    Text Solution

    |

  20. If 0ltalpha,betaltpi and cos alpha+cos beta -cos(alpha+beta)=(3)/(2), ...

    Text Solution

    |