Home
Class 12
MATHS
Let a=[(1,-1),(2, -1)] and B=[(a,1),(b,-...

Let `a=[(1,-1),(2, -1)] and B=[(a,1),(b,-1)]` are two matrices. If `(A+B)^(2)=A^(2)+B^(2)`, then the value of `3a+4b` is equal to

A

15

B

17

C

19

D

21

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) such that the equation \( (A + B)^2 = A^2 + B^2 \) holds true. Let's break this down step by step. ### Step 1: Define the Matrices We have: \[ A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} a & 1 \\ b & -1 \end{pmatrix} \] ### Step 2: Calculate \( A + B \) To find \( A + B \): \[ A + B = \begin{pmatrix} 1 + a & -1 + 1 \\ 2 + b & -1 - 1 \end{pmatrix} = \begin{pmatrix} 1 + a & 0 \\ 2 + b & -2 \end{pmatrix} \] ### Step 3: Calculate \( (A + B)^2 \) Now we compute \( (A + B)^2 \): \[ (A + B)^2 = (A + B)(A + B) = \begin{pmatrix} 1 + a & 0 \\ 2 + b & -2 \end{pmatrix} \begin{pmatrix} 1 + a & 0 \\ 2 + b & -2 \end{pmatrix} \] Calculating the product: - First row, first column: \[ (1 + a)(1 + a) + 0(2 + b) = (1 + a)^2 \] - First row, second column: \[ (1 + a)(0) + 0(-2) = 0 \] - Second row, first column: \[ (2 + b)(1 + a) + (-2)(2 + b) = (2 + b)(1 + a) - 2(2 + b) = (2 + b)(1 + a - 2) = (2 + b)(a - 1) \] - Second row, second column: \[ (2 + b)(0) + (-2)(-2) = 4 \] Thus, \[ (A + B)^2 = \begin{pmatrix} (1 + a)^2 & 0 \\ (2 + b)(a - 1) & 4 \end{pmatrix} \] ### Step 4: Calculate \( A^2 \) and \( B^2 \) Now we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \] Calculating the product: - First row, first column: \[ 1 \cdot 1 + (-1) \cdot 2 = 1 - 2 = -1 \] - First row, second column: \[ 1 \cdot (-1) + (-1) \cdot (-1) = -1 + 1 = 0 \] - Second row, first column: \[ 2 \cdot 1 + (-1) \cdot 2 = 2 - 2 = 0 \] - Second row, second column: \[ 2 \cdot (-1) + (-1) \cdot (-1) = -2 + 1 = -1 \] Thus, \[ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] Next, we calculate \( B^2 \): \[ B^2 = B \cdot B = \begin{pmatrix} a & 1 \\ b & -1 \end{pmatrix} \begin{pmatrix} a & 1 \\ b & -1 \end{pmatrix} \] Calculating the product: - First row, first column: \[ a^2 + 1 \cdot b = a^2 + b \] - First row, second column: \[ a \cdot 1 + 1 \cdot (-1) = a - 1 \] - Second row, first column: \[ b \cdot a + (-1) \cdot b = ab - b \] - Second row, second column: \[ b \cdot 1 + (-1)(-1) = b + 1 \] Thus, \[ B^2 = \begin{pmatrix} a^2 + b & a - 1 \\ ab - b & b + 1 \end{pmatrix} \] ### Step 5: Set Up the Equation Now we set up the equation \( (A + B)^2 = A^2 + B^2 \): \[ \begin{pmatrix} (1 + a)^2 & 0 \\ (2 + b)(a - 1) & 4 \end{pmatrix} = \begin{pmatrix} -1 + (a^2 + b) & a - 1 \\ ab - b & -1 + (b + 1) \end{pmatrix} \] ### Step 6: Equate the Matrices From the first row, first column: \[ (1 + a)^2 = -1 + a^2 + b \quad \text{(1)} \] From the second row, second column: \[ 4 = b \quad \text{(2)} \] From the second row, first column: \[ (2 + b)(a - 1) = ab - b \quad \text{(3)} \] ### Step 7: Solve the Equations From equation (2), we have: \[ b = 4 \] Substituting \( b = 4 \) into equation (1): \[ (1 + a)^2 = -1 + a^2 + 4 \] \[ (1 + a)^2 = a^2 + 3 \] Expanding the left side: \[ 1 + 2a + a^2 = a^2 + 3 \] Cancelling \( a^2 \) from both sides: \[ 1 + 2a = 3 \] \[ 2a = 2 \quad \Rightarrow \quad a = 1 \] ### Step 8: Calculate \( 3a + 4b \) Now we can find \( 3a + 4b \): \[ 3a + 4b = 3(1) + 4(4) = 3 + 16 = 19 \] ### Final Answer The value of \( 3a + 4b \) is \( \boxed{19} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 58

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2)) then find the values of a and b.

If A=[[1,-12,-1]] and B=[[a,1b,-1]] and (A+B)^(2),=A^(2)+B^(2), then find the value of a and b.

If A=[{:(1,2),(-1,-2):}], B=[{:(2,a),(-1,b):}] and (A+B)^(2) =A^(2) + B^(2) , then find the value of a and b.

If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2) . Then a and b are respectively

If A=[[1,-1],[2,-1]] , B=[[a,1],[b,-1]] and (A+B)^(2)=A^(2)+B^(2) ,then find the values of a and b

If A=[[1,-1],[2,-1]],B=[[a,1],[b,-1]] and (A+B)^(2)=A^(2)+B^(2) , the value of a+b is

If A=[[a,b],[-1,2]],B=[[1,1],[2,4]] and (A+B)(A-B)=A^(2)-B^(2) , then the value of a+b equals

let a=([1,-12,-1]), and B=([1,a4,b]) if (A+B)^(2)=A^(2)+B^(2) then (a,b)

NTA MOCK TESTS-NTA JEE MOCK TEST 57-MATHEMATICS
  1. Let circles C(1), C(2) and C(3) with centres O(1), O(2) and O(3) respe...

    Text Solution

    |

  2. If f:R rarr[-1, 1] be a function defined as f(x)=sin((x^(2)-8)/(x^(2)+...

    Text Solution

    |

  3. The area (in sq. units) of the triangle formed by the lines y=2x, y=-2...

    Text Solution

    |

  4. The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the cons...

    Text Solution

    |

  5. If x=2npi+tan^(-1).(p)/(q) and y=r is a solution of the equation 12s...

    Text Solution

    |

  6. The order and degree of the differential equation of all the parabolas...

    Text Solution

    |

  7. If veca, vecb and vecc are three non - zero and non - coplanar vectors...

    Text Solution

    |

  8. The number of values of x such that x, [x] and {x} are in arithmetic p...

    Text Solution

    |

  9. Let a=[(1,-1),(2, -1)] and B=[(a,1),(b,-1)] are two matrices. If (A+B)...

    Text Solution

    |

  10. There are n sets of observation given as (1),(2, 3), (4, 5, 6), (7, 8,...

    Text Solution

    |

  11. If Z=cos phi+isin phi(AA phi in ((pi)/(3),pi)), then the value of arg(...

    Text Solution

    |

  12. Given P=(1,0) and Q=(-1,0) and R is a variable point on one side of th...

    Text Solution

    |

  13. If (x(0), y(0), z(0))is any solution of the system of equations 2x-y-z...

    Text Solution

    |

  14. If the function f(x)={{:(asqrt(x+7),":",0lexlt9),(bx+5,":",xge9):} is ...

    Text Solution

    |

  15. Let f(x)={{:(x^(2)+4,":",xlt0),(4-2x,":",xge0):} then the area bounded...

    Text Solution

    |

  16. Let e and l are the eccentricity and length of the lactus rectum respe...

    Text Solution

    |

  17. Mr. Vipin, a famous liar, is known to speak the truth 5 out of 6 times...

    Text Solution

    |

  18. A trapezium is such that three of its sides have lengths as 9cm, then ...

    Text Solution

    |

  19. If the value of lim(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is...

    Text Solution

    |

  20. If .^(n+2)C(8) : ^(n-2)P(4)=57:16, then the value of (n)/(2) is

    Text Solution

    |