Home
Class 12
MATHS
If (x(0), y(0), z(0))is any solution of ...

If `(x_(0), y_(0), z_(0))`is any solution of the system of equations `2x-y-z=1, -x-y+2z=1 and x-2y+z=2`, then the value of `(x_(0)^(2)-y_(0)^(2)+1)/(z_(0))` (where, `z_(0) ne 0`) is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first analyze the given system of equations and then derive the required expression. ### Given System of Equations: 1. \( 2x - y - z = 1 \) (Equation 1) 2. \( -x - y + 2z = 1 \) (Equation 2) 3. \( x - 2y + z = 2 \) (Equation 3) ### Step 1: Form the Coefficient Matrix and Calculate Determinants We will use determinants to check the nature of the solutions. #### Determinant \( \Delta_1 \): \[ \Delta_1 = \begin{vmatrix} 2 & -1 & -1 \\ -1 & -1 & 2 \\ 1 & -2 & 1 \end{vmatrix} \] Calculating \( \Delta_1 \): - Expand along the first row: \[ \Delta_1 = 2 \begin{vmatrix} -1 & 2 \\ -2 & 1 \end{vmatrix} + 1 \begin{vmatrix} -1 & 2 \\ 1 & 1 \end{vmatrix} - 1 \begin{vmatrix} -1 & -1 \\ 1 & -2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 2 \\ -2 & 1 \end{vmatrix} = (-1)(1) - (2)(-2) = -1 + 4 = 3 \) 2. \( \begin{vmatrix} -1 & 2 \\ 1 & 1 \end{vmatrix} = (-1)(1) - (2)(1) = -1 - 2 = -3 \) 3. \( \begin{vmatrix} -1 & -1 \\ 1 & -2 \end{vmatrix} = (-1)(-2) - (-1)(1) = 2 + 1 = 3 \) Putting it all together: \[ \Delta_1 = 2(3) + 1(-3) - 1(3) = 6 - 3 - 3 = 0 \] ### Step 2: Check for Infinite Solutions Since \( \Delta_1 = 0 \), we will check \( \Delta_2 \) and \( \Delta_3 \) to confirm if we have infinite solutions. #### Determinant \( \Delta_2 \): \[ \Delta_2 = \begin{vmatrix} 1 & -1 & -1 \\ 1 & -1 & 2 \\ 2 & -2 & 1 \end{vmatrix} \] Calculating \( \Delta_2 \): - Expand along the first row: \[ \Delta_2 = 1 \begin{vmatrix} -1 & 2 \\ -2 & 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & -1 \\ 2 & -2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 2 \\ -2 & 1 \end{vmatrix} = 3 \) (calculated earlier) 2. \( \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 1 - 4 = -3 \) 3. \( \begin{vmatrix} 1 & -1 \\ 2 & -2 \end{vmatrix} = 0 \) Putting it all together: \[ \Delta_2 = 1(3) + 1(-3) - 1(0) = 3 - 3 = 0 \] #### Determinant \( \Delta_3 \): \[ \Delta_3 = \begin{vmatrix} 2 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & -2 & 2 \end{vmatrix} \] Calculating \( \Delta_3 \): - Expand along the first row: \[ \Delta_3 = 2 \begin{vmatrix} -1 & 1 \\ -2 & 2 \end{vmatrix} + 1 \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} + 1 \begin{vmatrix} -1 & -1 \\ 1 & -2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 1 \\ -2 & 2 \end{vmatrix} = -2 + 2 = 0 \) 2. \( \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} = -2 - 1 = -3 \) 3. \( \begin{vmatrix} -1 & -1 \\ 1 & -2 \end{vmatrix} = 2 - 1 = 1 \) Putting it all together: \[ \Delta_3 = 2(0) + 1(-3) + 1(1) = -3 + 1 = -2 \] ### Conclusion on Solutions Since \( \Delta_1 = 0 \), \( \Delta_2 = 0 \), and \( \Delta_3 \neq 0 \), we have infinite solutions. ### Step 3: Express Variables in Terms of a Parameter Let \( z = \lambda \). Substitute \( z \) into the equations to find \( x \) and \( y \). From Equation 1: \[ 2x - y - \lambda = 1 \implies 2x - y = 1 + \lambda \quad (1) \] From Equation 2: \[ -x - y + 2\lambda = 1 \implies -x - y = 1 - 2\lambda \quad (2) \] From Equation 3: \[ x - 2y + \lambda = 2 \implies x - 2y = 2 - \lambda \quad (3) \] ### Step 4: Solve for \( x \) and \( y \) From (1) and (2): Adding (1) and (2): \[ 2x - y - x - y = 1 + \lambda + 1 - 2\lambda \] \[ x - 2y = 2 - \lambda \quad (which is same as (3)) \] From (1): \[ y = 2x - (1 + \lambda) \] Substituting \( y \) in terms of \( x \) into (3): \[ x - 2(2x - (1 + \lambda)) = 2 - \lambda \] \[ x - 4x + 2 + 2\lambda = 2 - \lambda \] \[ -3x + 3\lambda = 0 \implies x = \lambda \] Substituting \( x = \lambda \) back into (1): \[ 2\lambda - y = 1 + \lambda \implies y = \lambda - 1 \] ### Step 5: Calculate the Required Expression Now we have: - \( x_0 = \lambda \) - \( y_0 = \lambda - 1 \) - \( z_0 = \lambda \) We need to find: \[ \frac{x_0^2 - y_0^2 + 1}{z_0} \] Substituting the values: \[ = \frac{\lambda^2 - (\lambda - 1)^2 + 1}{\lambda} \] \[ = \frac{\lambda^2 - (\lambda^2 - 2\lambda + 1) + 1}{\lambda} \] \[ = \frac{\lambda^2 - \lambda^2 + 2\lambda - 1 + 1}{\lambda} \] \[ = \frac{2\lambda}{\lambda} = 2 \] ### Final Answer: The value of \( \frac{x_0^2 - y_0^2 + 1}{z_0} \) is \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 58

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Solve the system of equations 2x+3y-3z=0 , 3x-3y+z=0 and 3x-2y-3z=0

Find the solution of homogeneous system of equations: x-2y+z=0;x+y=z and 3x+6y=5z

Solve the system of equations x+3y -2z =0, 2x-y+4z =0 ,x-11y+14z =0

if the system of equations x+y+z=0 , x+3y+k^2z=0 and x+2y+z=0 have a non zero solution then value of y+(x/z) is

If the system of equation 14x-3y+z=12, x-2y=0 and x+2z=0 has a solution (x_(0), y_(0), z_(0)) , then the value of x_(0)^(2)+y_(2)^(2)+z_(2)^(2) is equal to

If x>0,y>0,z>0 and x+y+z=1 then the minimum value of (x)/(2-x)+(y)/(2-y)+(z)/(2-z) is

Solve the system of equations by cramer's rule: x+y+z=1 , x+2y+z=2 , x+y+2z=0

Consider the system of equations : x sintheta-2ycostheta-az=0 , x+2y+z=0 , -x+y+z=0 , theta in R

NTA MOCK TESTS-NTA JEE MOCK TEST 57-MATHEMATICS
  1. Let circles C(1), C(2) and C(3) with centres O(1), O(2) and O(3) respe...

    Text Solution

    |

  2. If f:R rarr[-1, 1] be a function defined as f(x)=sin((x^(2)-8)/(x^(2)+...

    Text Solution

    |

  3. The area (in sq. units) of the triangle formed by the lines y=2x, y=-2...

    Text Solution

    |

  4. The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the cons...

    Text Solution

    |

  5. If x=2npi+tan^(-1).(p)/(q) and y=r is a solution of the equation 12s...

    Text Solution

    |

  6. The order and degree of the differential equation of all the parabolas...

    Text Solution

    |

  7. If veca, vecb and vecc are three non - zero and non - coplanar vectors...

    Text Solution

    |

  8. The number of values of x such that x, [x] and {x} are in arithmetic p...

    Text Solution

    |

  9. Let a=[(1,-1),(2, -1)] and B=[(a,1),(b,-1)] are two matrices. If (A+B)...

    Text Solution

    |

  10. There are n sets of observation given as (1),(2, 3), (4, 5, 6), (7, 8,...

    Text Solution

    |

  11. If Z=cos phi+isin phi(AA phi in ((pi)/(3),pi)), then the value of arg(...

    Text Solution

    |

  12. Given P=(1,0) and Q=(-1,0) and R is a variable point on one side of th...

    Text Solution

    |

  13. If (x(0), y(0), z(0))is any solution of the system of equations 2x-y-z...

    Text Solution

    |

  14. If the function f(x)={{:(asqrt(x+7),":",0lexlt9),(bx+5,":",xge9):} is ...

    Text Solution

    |

  15. Let f(x)={{:(x^(2)+4,":",xlt0),(4-2x,":",xge0):} then the area bounded...

    Text Solution

    |

  16. Let e and l are the eccentricity and length of the lactus rectum respe...

    Text Solution

    |

  17. Mr. Vipin, a famous liar, is known to speak the truth 5 out of 6 times...

    Text Solution

    |

  18. A trapezium is such that three of its sides have lengths as 9cm, then ...

    Text Solution

    |

  19. If the value of lim(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is...

    Text Solution

    |

  20. If .^(n+2)C(8) : ^(n-2)P(4)=57:16, then the value of (n)/(2) is

    Text Solution

    |