Home
Class 12
MATHS
If the value of lim(xrarr(pi)/(6))(cos(x...

If the value of `lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx))` is equal to `lambda`, then the value of `120lambda^(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow these steps: ### Step 1: Identify the limit expression We are given the limit expression: \[ \lim_{x \to \frac{\pi}{6}} \frac{\cos\left(x + \frac{\pi}{3}\right)}{1 - \sqrt{3} \tan x} \] ### Step 2: Substitute \(x = \frac{\pi}{6}\) First, we substitute \(x = \frac{\pi}{6}\) into the expression: - The numerator becomes: \[ \cos\left(\frac{\pi}{6} + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{2}\right) = 0 \] - The denominator becomes: \[ 1 - \sqrt{3} \tan\left(\frac{\pi}{6}\right) = 1 - \sqrt{3} \cdot \frac{1}{\sqrt{3}} = 1 - 1 = 0 \] Thus, we have a \( \frac{0}{0} \) indeterminate form. ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right-hand side exists. #### Differentiate the numerator and denominator: - The derivative of the numerator: \[ \frac{d}{dx} \left(\cos\left(x + \frac{\pi}{3}\right)\right) = -\sin\left(x + \frac{\pi}{3}\right) \] - The derivative of the denominator: \[ \frac{d}{dx} \left(1 - \sqrt{3} \tan x\right) = -\sqrt{3} \sec^2 x \] ### Step 4: Rewrite the limit using derivatives Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{6}} \frac{-\sin\left(x + \frac{\pi}{3}\right)}{-\sqrt{3} \sec^2 x} = \lim_{x \to \frac{\pi}{6}} \frac{\sin\left(x + \frac{\pi}{3}\right)}{\sqrt{3} \sec^2 x} \] ### Step 5: Substitute \(x = \frac{\pi}{6}\) again Substituting \(x = \frac{\pi}{6}\): - The numerator becomes: \[ \sin\left(\frac{\pi}{6} + \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] - The denominator becomes: \[ \sqrt{3} \sec^2\left(\frac{\pi}{6}\right) = \sqrt{3} \cdot \left(\frac{2}{\sqrt{3}}\right)^2 = \sqrt{3} \cdot \frac{4}{3} = \frac{4\sqrt{3}}{3} \] ### Step 6: Final limit calculation Now we can compute the limit: \[ \lim_{x \to \frac{\pi}{6}} \frac{1}{\frac{4\sqrt{3}}{3}} = \frac{3}{4\sqrt{3}} = \frac{3\sqrt{3}}{12} = \frac{\sqrt{3}}{4} \] Thus, we have: \[ \lambda = \frac{\sqrt{3}}{4} \] ### Step 7: Calculate \(120 \lambda^2\) Now we need to calculate \(120 \lambda^2\): \[ \lambda^2 = \left(\frac{\sqrt{3}}{4}\right)^2 = \frac{3}{16} \] Then, \[ 120 \lambda^2 = 120 \cdot \frac{3}{16} = \frac{360}{16} = 22.5 \] ### Final Answer Thus, the value of \(120 \lambda^2\) is: \[ \boxed{22.5} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 58

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is equal to

The value of lim_(xrarr-pi)(|x+pi|)/(sinx)

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

The value of lim_(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to

lim _(xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

NTA MOCK TESTS-NTA JEE MOCK TEST 57-MATHEMATICS
  1. Let circles C(1), C(2) and C(3) with centres O(1), O(2) and O(3) respe...

    Text Solution

    |

  2. If f:R rarr[-1, 1] be a function defined as f(x)=sin((x^(2)-8)/(x^(2)+...

    Text Solution

    |

  3. The area (in sq. units) of the triangle formed by the lines y=2x, y=-2...

    Text Solution

    |

  4. The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the cons...

    Text Solution

    |

  5. If x=2npi+tan^(-1).(p)/(q) and y=r is a solution of the equation 12s...

    Text Solution

    |

  6. The order and degree of the differential equation of all the parabolas...

    Text Solution

    |

  7. If veca, vecb and vecc are three non - zero and non - coplanar vectors...

    Text Solution

    |

  8. The number of values of x such that x, [x] and {x} are in arithmetic p...

    Text Solution

    |

  9. Let a=[(1,-1),(2, -1)] and B=[(a,1),(b,-1)] are two matrices. If (A+B)...

    Text Solution

    |

  10. There are n sets of observation given as (1),(2, 3), (4, 5, 6), (7, 8,...

    Text Solution

    |

  11. If Z=cos phi+isin phi(AA phi in ((pi)/(3),pi)), then the value of arg(...

    Text Solution

    |

  12. Given P=(1,0) and Q=(-1,0) and R is a variable point on one side of th...

    Text Solution

    |

  13. If (x(0), y(0), z(0))is any solution of the system of equations 2x-y-z...

    Text Solution

    |

  14. If the function f(x)={{:(asqrt(x+7),":",0lexlt9),(bx+5,":",xge9):} is ...

    Text Solution

    |

  15. Let f(x)={{:(x^(2)+4,":",xlt0),(4-2x,":",xge0):} then the area bounded...

    Text Solution

    |

  16. Let e and l are the eccentricity and length of the lactus rectum respe...

    Text Solution

    |

  17. Mr. Vipin, a famous liar, is known to speak the truth 5 out of 6 times...

    Text Solution

    |

  18. A trapezium is such that three of its sides have lengths as 9cm, then ...

    Text Solution

    |

  19. If the value of lim(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is...

    Text Solution

    |

  20. If .^(n+2)C(8) : ^(n-2)P(4)=57:16, then the value of (n)/(2) is

    Text Solution

    |