Home
Class 12
MATHS
The value of the integral I=int(0)^((pi)...

The value of the integral `I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx` is equal to

A

`(pi)/(2)`

B

`pi`

C

0

D

`4pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{10 - x^2 + \frac{\pi x}{2}} \, dx, \] we can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \), thus \( a + b = \frac{\pi}{2} \). ### Step 1: Apply the property of definite integrals We can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right)}{10 - \left(\frac{\pi}{2} - x\right)^2 + \frac{\pi}{2} \left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 2: Simplify the trigonometric functions Using the identities \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \) and \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \), we can rewrite the numerator: \[ \cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right) = \sin x - \cos x. \] ### Step 3: Substitute and simplify the denominator Now, we need to simplify the denominator: \[ 10 - \left(\frac{\pi}{2} - x\right)^2 + \frac{\pi}{2} \left(\frac{\pi}{2} - x\right). \] Calculating \( \left(\frac{\pi}{2} - x\right)^2 \): \[ \left(\frac{\pi}{2} - x\right)^2 = \frac{\pi^2}{4} - \pi x + x^2. \] Now substituting this into the denominator: \[ 10 - \left(\frac{\pi^2}{4} - \pi x + x^2\right) + \frac{\pi^2}{4} - \frac{\pi x}{2}. \] This simplifies to: \[ 10 - \frac{\pi^2}{4} + \pi x - x^2 - \frac{\pi^2}{4} + \frac{\pi x}{2} = 10 - \frac{\pi^2}{2} + \frac{3\pi x}{2} - x^2. \] ### Step 4: Combine the integrals Now, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{10 - \frac{\pi^2}{2} + \frac{3\pi x}{2} - x^2} \, dx. \] ### Step 5: Combine both integrals Now we can combine both expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{10 - x^2 + \frac{\pi x}{2}} \, dx = -I. \] ### Step 6: Solve for \( I \) Adding both sides gives: \[ 2I = 0 \implies I = 0. \] Thus, the value of the integral is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 58

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 60

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)(cosx/(2+sinx))dx

int_(0)^( pi/2)(cosx)/(1+sinx)dx

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

int_(0)^(pi//2)(dx)/((cosx+2sinx))

The value of the integral int_(0)^(1) log sin ((pix)/(2))dx is

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to

The value of the integral int_(a)^(a+pi//2) (|sin x|+|cosx|)dx is

int_(0)^( pi/2)(cosx/(cosx+sinx))dx

NTA MOCK TESTS-NTA JEE MOCK TEST 59-MATHEMATICS
  1. Consider the matrix A=[(3,1),(-6,-2)], then (I+A)^(40) is equal to

    Text Solution

    |

  2. The lines joining the origin to the points of intersection of the line...

    Text Solution

    |

  3. The value of the integral I=int(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pi...

    Text Solution

    |

  4. If sinx +cosx=(sqrt7)/(2), where x in [0, (pi)/(4)], then the value of...

    Text Solution

    |

  5. The equation tan^(4)x-2sec^(2)x+a^(2)=0 will have at least one solutio...

    Text Solution

    |

  6. The statement ~prarr(qrarrp) is equivalent to

    Text Solution

    |

  7. If the standard deviation of n observation x(1), x(2),…….,x(n) is 5 an...

    Text Solution

    |

  8. The domain of the function f(x)=log(2)[1-log(12)(x^(2)-5x+16)] is

    Text Solution

    |

  9. The lenth of the portion of the common tangent to x^(2)+y^(2)=16 and 9...

    Text Solution

    |

  10. The equation of the curve lying in the first quadrant, such that the p...

    Text Solution

    |

  11. sum(r=1)^(n)=(r )/(r^(4)+r^(2)+1) is equal to

    Text Solution

    |

  12. If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c, where c is the ...

    Text Solution

    |

  13. The points on the curve y=x^(2) which are closest to the point P(0, 1)...

    Text Solution

    |

  14. Let DeltaOAB be an equilateral triangle with side length unity (O bein...

    Text Solution

    |

  15. If A and B are two independent events such that P(A) gt (1)/(2), P(A n...

    Text Solution

    |

  16. If A, B and C are square matrices of order 3 and |A|=2, |B|=3 and |C|=...

    Text Solution

    |

  17. Sigma(r=0)^(n)(n-r)(.^(n)C(r))^(2) is equal to

    Text Solution

    |

  18. For a complex number z, the equation z^(2)+(p+iq)z r+" is "=0 has a re...

    Text Solution

    |

  19. The length of the normal chord which subtends an angle of 90^(@) at th...

    Text Solution

    |

  20. Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):}, t...

    Text Solution

    |