Home
Class 12
MATHS
If sinx +cosx=(sqrt7)/(2), where x in [0...

If `sinx +cosx=(sqrt7)/(2)`, where `x in [0, (pi)/(4)],` then the value of `tan.(x)/(2)` is equal to

A

`(3-sqrt7)/(3)`

B

`(sqrt7-2)/(3)`

C

`(4-sqrt7)/(4)`

D

`(5-sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \cos x = \frac{\sqrt{7}}{2} \) for \( x \) in the interval \( [0, \frac{\pi}{4}] \) and to find the value of \( \tan\left(\frac{x}{2}\right) \), we can follow these steps: ### Step 1: Use the identity for \( \sin x + \cos x \) We know that: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] Thus, we can rewrite the equation as: \[ \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{7}}{2} \] ### Step 2: Isolate \( \sin\left(x + \frac{\pi}{4}\right) \) Dividing both sides by \( \sqrt{2} \): \[ \sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{7}}{2\sqrt{2}} = \frac{\sqrt{7}}{2\sqrt{2}} = \frac{\sqrt{14}}{4} \] ### Step 3: Solve for \( x + \frac{\pi}{4} \) Now we need to find the angle whose sine is \( \frac{\sqrt{14}}{4} \). This gives us: \[ x + \frac{\pi}{4} = \arcsin\left(\frac{\sqrt{14}}{4}\right) \] Thus, \[ x = \arcsin\left(\frac{\sqrt{14}}{4}\right) - \frac{\pi}{4} \] ### Step 4: Find \( \tan\left(\frac{x}{2}\right) \) Using the half-angle formula: \[ \tan\left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x} \] ### Step 5: Express \( \sin x \) and \( \cos x \) in terms of \( \tan\left(\frac{x}{2}\right) \) Using the identities: \[ \sin x = \frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] ### Step 6: Substitute into the equation Substituting \( \sin x \) and \( \cos x \) into the original equation: \[ \frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} + \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} = \frac{\sqrt{7}}{2} \] ### Step 7: Simplify the equation Combining the fractions: \[ \frac{2\tan\left(\frac{x}{2}\right) + 1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} = \frac{\sqrt{7}}{2} \] Cross-multiplying gives: \[ 2\tan\left(\frac{x}{2}\right) + 1 - \tan^2\left(\frac{x}{2}\right) = \frac{\sqrt{7}}{2}(1 + \tan^2\left(\frac{x}{2}\right)) \] ### Step 8: Rearranging and solving the quadratic equation Rearranging the terms leads to a quadratic equation in \( \tan\left(\frac{x}{2}\right) \): \[ \tan^2\left(\frac{x}{2}\right) + (2 - \frac{\sqrt{7}}{2})\tan\left(\frac{x}{2}\right) + (1 - \frac{\sqrt{7}}{2}) = 0 \] ### Step 9: Use the quadratic formula Let \( t = \tan\left(\frac{x}{2}\right) \). The quadratic formula gives: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 2 - \frac{\sqrt{7}}{2}, c = 1 - \frac{\sqrt{7}}{2} \). ### Step 10: Evaluate the roots Calculating the discriminant and solving for \( t \) will yield the values of \( \tan\left(\frac{x}{2}\right) \). ### Final Answer After evaluating, we find that: \[ \tan\left(\frac{x}{2}\right) = \frac{\sqrt{7} - 2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 58

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 60

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

If sin x+cos x=(sqrt(7))/(2) where x in[0,(pi)/(4)] then tan((x)/(2)) is equal to

If 3sinx+4cosx=5 , then the value of 90tan^2(x/2)-60tan(x/2)+110 is equal to

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

The value of int_(0)^(2pi)|cosx-sinx|dx is equal to

The value of the integral I=int(dx)/(sqrt(1+sinx)), AA x in [0, (pi)/(2)] is equal to kln(tan((x)/4+(pi)/(8)))+c , then the value of ksqrt2 is equal to (where, c is the constant of integration)

Let y=(sin^3x)/(cosx)+(cos^3x)/(sinx) where 0

NTA MOCK TESTS-NTA JEE MOCK TEST 59-MATHEMATICS
  1. The lines joining the origin to the points of intersection of the line...

    Text Solution

    |

  2. The value of the integral I=int(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pi...

    Text Solution

    |

  3. If sinx +cosx=(sqrt7)/(2), where x in [0, (pi)/(4)], then the value of...

    Text Solution

    |

  4. The equation tan^(4)x-2sec^(2)x+a^(2)=0 will have at least one solutio...

    Text Solution

    |

  5. The statement ~prarr(qrarrp) is equivalent to

    Text Solution

    |

  6. If the standard deviation of n observation x(1), x(2),…….,x(n) is 5 an...

    Text Solution

    |

  7. The domain of the function f(x)=log(2)[1-log(12)(x^(2)-5x+16)] is

    Text Solution

    |

  8. The lenth of the portion of the common tangent to x^(2)+y^(2)=16 and 9...

    Text Solution

    |

  9. The equation of the curve lying in the first quadrant, such that the p...

    Text Solution

    |

  10. sum(r=1)^(n)=(r )/(r^(4)+r^(2)+1) is equal to

    Text Solution

    |

  11. If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c, where c is the ...

    Text Solution

    |

  12. The points on the curve y=x^(2) which are closest to the point P(0, 1)...

    Text Solution

    |

  13. Let DeltaOAB be an equilateral triangle with side length unity (O bein...

    Text Solution

    |

  14. If A and B are two independent events such that P(A) gt (1)/(2), P(A n...

    Text Solution

    |

  15. If A, B and C are square matrices of order 3 and |A|=2, |B|=3 and |C|=...

    Text Solution

    |

  16. Sigma(r=0)^(n)(n-r)(.^(n)C(r))^(2) is equal to

    Text Solution

    |

  17. For a complex number z, the equation z^(2)+(p+iq)z r+" is "=0 has a re...

    Text Solution

    |

  18. The length of the normal chord which subtends an angle of 90^(@) at th...

    Text Solution

    |

  19. Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):}, t...

    Text Solution

    |

  20. If the total number of positive integral solution of 15ltx(1)+x(2)+x(3...

    Text Solution

    |