Home
Class 12
MATHS
If vectors 4vecp+vecq, 2 vecp-3vecq and ...

If vectors `4vecp+vecq, 2 vecp-3vecq and 5vecp-3vecq, 5vecp+3vecq` are a pair of mutually perpendicular vectors and if the angle between `vecp and vecq` is `theta`, then the value of `sin^(2)theta` is equal to

A

`(3)/(5)`

B

`(9)/(25)`

C

`(1)/(2500)`

D

`(2499)/(2500)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^2 \theta \) given that the vectors \( 4\vec{p} + \vec{q} \), \( 2\vec{p} - 3\vec{q} \), \( 5\vec{p} - 3\vec{q} \), and \( 5\vec{p} + 3\vec{q} \) are mutually perpendicular. ### Step 1: Set up the equations for perpendicular vectors Since the vectors are mutually perpendicular, the dot product of any two vectors must equal zero. We can start with the first pair: \[ (4\vec{p} + \vec{q}) \cdot (2\vec{p} - 3\vec{q}) = 0 \] ### Step 2: Calculate the dot product Expanding the dot product: \[ 4\vec{p} \cdot 2\vec{p} + 4\vec{p} \cdot (-3\vec{q}) + \vec{q} \cdot 2\vec{p} + \vec{q} \cdot (-3\vec{q}) = 0 \] This simplifies to: \[ 8\vec{p} \cdot \vec{p} - 12\vec{p} \cdot \vec{q} + 2\vec{q} \cdot \vec{p} - 3\vec{q} \cdot \vec{q} = 0 \] Using \( \vec{p} \cdot \vec{q} = \vec{q} \cdot \vec{p} \), we can combine terms: \[ 8|\vec{p}|^2 - 10\vec{p} \cdot \vec{q} - 3|\vec{q}|^2 = 0 \tag{1} \] ### Step 3: Set up the second equation for the other pair Now consider the second pair of vectors: \[ (5\vec{p} + 3\vec{q}) \cdot (5\vec{p} - 3\vec{q}) = 0 \] Expanding this: \[ (5\vec{p}) \cdot (5\vec{p}) + (5\vec{p}) \cdot (-3\vec{q}) + (3\vec{q}) \cdot (5\vec{p}) + (3\vec{q}) \cdot (-3\vec{q}) = 0 \] This simplifies to: \[ 25|\vec{p}|^2 - 9|\vec{q}|^2 = 0 \tag{2} \] ### Step 4: Solve the equations From equation (2): \[ 25|\vec{p}|^2 = 9|\vec{q}|^2 \implies |\vec{p}|^2 = \frac{9}{25}|\vec{q}|^2 \] Substituting this into equation (1): \[ 8\left(\frac{9}{25}|\vec{q}|^2\right) - 10\vec{p} \cdot \vec{q} - 3|\vec{q}|^2 = 0 \] This simplifies to: \[ \frac{72}{25}|\vec{q}|^2 - 10\vec{p} \cdot \vec{q} - 3|\vec{q}|^2 = 0 \] Combining the terms gives: \[ \left(\frac{72}{25} - 3\right)|\vec{q}|^2 = 10\vec{p} \cdot \vec{q} \] Converting \( 3 \) to a fraction: \[ \frac{72}{25} - \frac{75}{25} = -\frac{3}{25} \implies -\frac{3}{25}|\vec{q}|^2 = 10\vec{p} \cdot \vec{q} \] Thus, \[ \vec{p} \cdot \vec{q} = -\frac{3}{250}|\vec{q}|^2 \] ### Step 5: Find \( \cos \theta \) Using the relationship \( \cos \theta = \frac{\vec{p} \cdot \vec{q}}{|\vec{p}||\vec{q}|} \): Substituting the value of \( \vec{p} \cdot \vec{q} \): \[ \cos \theta = \frac{-\frac{3}{250}|\vec{q}|^2}{|\vec{p}||\vec{q}|} \] Using \( |\vec{p}| = \frac{3}{5}|\vec{q}| \): \[ \cos \theta = \frac{-\frac{3}{250}|\vec{q}|^2}{\frac{3}{5}|\vec{q}||\vec{q}|} = -\frac{1}{50} \] ### Step 6: Calculate \( \sin^2 \theta \) Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ \cos^2 \theta = \left(-\frac{1}{50}\right)^2 = \frac{1}{2500} \] Thus, \[ \sin^2 \theta = 1 - \frac{1}{2500} = \frac{2499}{2500} \] ### Final Answer The value of \( \sin^2 \theta \) is: \[ \sin^2 \theta = \frac{2499}{2500} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 60

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 62

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the vectors 3vecP+vecq, 5vecP - 3vecq and 2 vecp+ vecq, 4 vecp - 2vecq are pairs of mutually perpendicular vectors, the find the angle between vectors vecp and vecq .

If the vectors 3vecP+vecq, 5vecP - 3vecq and 2 vecp+ vecq, 4 vecp - 2vecq are pairs of mutually perpendicular vectors, the find the angle between vectors vecp and vecq .

If vecP.vecQ=PQ then angle between vecP and vecQ is

The resultant of vecP and vecQ is perpendicular to vecP . What is the angle between vecP and vecQ

If |vecP + vecQ| = |vecP -vecQ| the angle between vecP and vecQ is

If vecpxxvecq=vecr and vecp.vecq=c , then vecq is

What is the angle between (vecP+vecQ) and (vecPxxvecQ)

if vecP +vecQ = vecP -vecQ , then

If vecP -vecQ - vecR=0 and the magnitudes of vecP, vecQ and vecR are 5 , 4 and 3 units respectively, the angle between vecP and vecR is

NTA MOCK TESTS-NTA JEE MOCK TEST 61-MATHEMATICS
  1. Two ships are sailling in the sea on the two sides of a lighthouse. If...

    Text Solution

    |

  2. If [sin^(-1)x]^(2)-2[sin^(-1)x]+1le0 (where, [.] represents the greate...

    Text Solution

    |

  3. Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2), then...

    Text Solution

    |

  4. If the variate of a distribution takes the values 1^(2), 2^(2), 3^(2),...

    Text Solution

    |

  5. The point of intersection of tangents drawn to the hyperbola (x^2)/(a^...

    Text Solution

    |

  6. The value of the integral int(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx i...

    Text Solution

    |

  7. The curve y=f(x) in the first quadrant is such that the y - intercept ...

    Text Solution

    |

  8. The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx i...

    Text Solution

    |

  9. If A, B and C are square matrices of same order and I is an identity m...

    Text Solution

    |

  10. The system of equations alpha(x-1)+y+z=-1, x+alpha(y-1)+z=-1 and x+y+a...

    Text Solution

    |

  11. If vectors 4vecp+vecq, 2 vecp-3vecq and 5vecp-3vecq, 5vecp+3vecq are a...

    Text Solution

    |

  12. The equation of the plane through the points (2,-1,0), (3,-4,5) parall...

    Text Solution

    |

  13. The line 2x+3y=12 meets the coordinates axes at A and B respectively. ...

    Text Solution

    |

  14. The extremities of a diagonal of a rectangle which are parallel to the...

    Text Solution

    |

  15. The ordinates of points P and Q on the parabola y^2=12x are in the rat...

    Text Solution

    |

  16. The area (in sq. untis) bounded by [x+y]=2 with the co - ordinate axes...

    Text Solution

    |

  17. Out of 1000 boys in a school, 300 played cricket, 380 played hockey an...

    Text Solution

    |

  18. If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n(1))+sqrt(n(2))+sqrt(n(3))+sqrt(...

    Text Solution

    |

  19. The number of solution of x^(3)+4x-1=0 in the interval x in(-2,1) is

    Text Solution

    |

  20. For the complex number Z, the sum of all the solutions of Z^(2)+|Z|=(b...

    Text Solution

    |