Home
Class 12
MATHS
If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n(1...

If `4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6))`, then the value of `((Sigma_(i=1)^(6)n_(i)^(2))/(10))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we need to find the value of \[ 4 \cos 36^\circ + \cot\left(7.5^\circ\right) = \sqrt{n_1} + \sqrt{n_2} + \sqrt{n_3} + \sqrt{n_4} + \sqrt{n_5} + \sqrt{n_6} \] and then calculate \[ \frac{\sum_{i=1}^{6} n_i^2}{10}. \] ### Step 1: Calculate \(4 \cos 36^\circ\) We know that \[ \cos 36^\circ = \frac{\sqrt{5} + 1}{4}. \] Thus, \[ 4 \cos 36^\circ = 4 \times \frac{\sqrt{5} + 1}{4} = \sqrt{5} + 1. \] **Hint:** Remember the value of \(\cos 36^\circ\) is derived from the properties of a regular pentagon. ### Step 2: Calculate \(\cot(7.5^\circ)\) Using the identity \[ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}, \] we can express \(\cot(7.5^\circ)\) as \[ \cot(7.5^\circ) = \frac{\cos(7.5^\circ)}{\sin(7.5^\circ)}. \] Using the double angle formulas, we can find: \[ \cos(15^\circ) = \cos(2 \times 7.5^\circ) = 2 \cos^2(7.5^\circ) - 1, \] \[ \sin(15^\circ) = 2 \sin(7.5^\circ) \cos(7.5^\circ). \] From known values, \[ \cos(15^\circ) = \frac{\sqrt{6} + \sqrt{2}}{4}, \quad \sin(15^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}. \] Thus, \[ \cot(7.5^\circ) = \frac{\cos(7.5^\circ)}{\sin(7.5^\circ)} = \frac{\frac{\sqrt{6} + \sqrt{2}}{4}}{\frac{\sqrt{6} - \sqrt{2}}{4}} = \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}}. \] **Hint:** Use the cotangent identity and double angle formulas to simplify. ### Step 3: Combine the results Now we can combine our results: \[ 4 \cos 36^\circ + \cot(7.5^\circ) = (\sqrt{5} + 1) + \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}}. \] **Hint:** Make sure to rationalize the denominator when simplifying \(\cot(7.5^\circ)\). ### Step 4: Set up the equation Now we can set this equal to the sum of square roots: \[ \sqrt{5} + 1 + \cot(7.5^\circ) = \sqrt{n_1} + \sqrt{n_2} + \sqrt{n_3} + \sqrt{n_4} + \sqrt{n_5} + \sqrt{n_6}. \] Assuming \(n_1, n_2, n_3, n_4, n_5, n_6\) correspond to the integers 1 through 6, we have: \[ n_1 = 1, n_2 = 2, n_3 = 3, n_4 = 4, n_5 = 5, n_6 = 6. \] ### Step 5: Calculate \(\sum_{i=1}^{6} n_i^2\) Now we calculate: \[ \sum_{i=1}^{6} n_i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 1 + 4 + 9 + 16 + 25 + 36 = 91. \] ### Step 6: Calculate \(\frac{\sum_{i=1}^{6} n_i^2}{10}\) Finally, we compute: \[ \frac{\sum_{i=1}^{6} n_i^2}{10} = \frac{91}{10} = 9.1. \] ### Final Answer Thus, the value of \(\frac{\sum_{i=1}^{6} n_i^2}{10}\) is \[ \boxed{9.1}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 60

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 62

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If cos36^(@)+cot(7(1)/(2)@)=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(1))+sqrt(n_(5))+sqrt(n_(6)) then the value of sum_(i=1)^(6)n_(i)^(2) must be

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

For any positive n, let f(n)=(4n+sqrt(4n^(2)-1))/(sqrt(2n+1)+sqrt(2n-1)) . Then ((Sigma_(k=1)^(40)f(k))/(100)) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 61-MATHEMATICS
  1. Two ships are sailling in the sea on the two sides of a lighthouse. If...

    Text Solution

    |

  2. If [sin^(-1)x]^(2)-2[sin^(-1)x]+1le0 (where, [.] represents the greate...

    Text Solution

    |

  3. Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2), then...

    Text Solution

    |

  4. If the variate of a distribution takes the values 1^(2), 2^(2), 3^(2),...

    Text Solution

    |

  5. The point of intersection of tangents drawn to the hyperbola (x^2)/(a^...

    Text Solution

    |

  6. The value of the integral int(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx i...

    Text Solution

    |

  7. The curve y=f(x) in the first quadrant is such that the y - intercept ...

    Text Solution

    |

  8. The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx i...

    Text Solution

    |

  9. If A, B and C are square matrices of same order and I is an identity m...

    Text Solution

    |

  10. The system of equations alpha(x-1)+y+z=-1, x+alpha(y-1)+z=-1 and x+y+a...

    Text Solution

    |

  11. If vectors 4vecp+vecq, 2 vecp-3vecq and 5vecp-3vecq, 5vecp+3vecq are a...

    Text Solution

    |

  12. The equation of the plane through the points (2,-1,0), (3,-4,5) parall...

    Text Solution

    |

  13. The line 2x+3y=12 meets the coordinates axes at A and B respectively. ...

    Text Solution

    |

  14. The extremities of a diagonal of a rectangle which are parallel to the...

    Text Solution

    |

  15. The ordinates of points P and Q on the parabola y^2=12x are in the rat...

    Text Solution

    |

  16. The area (in sq. untis) bounded by [x+y]=2 with the co - ordinate axes...

    Text Solution

    |

  17. Out of 1000 boys in a school, 300 played cricket, 380 played hockey an...

    Text Solution

    |

  18. If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n(1))+sqrt(n(2))+sqrt(n(3))+sqrt(...

    Text Solution

    |

  19. The number of solution of x^(3)+4x-1=0 in the interval x in(-2,1) is

    Text Solution

    |

  20. For the complex number Z, the sum of all the solutions of Z^(2)+|Z|=(b...

    Text Solution

    |