Home
Class 12
MATHS
If Sigma(r=1)^(n)t(r)=(1)/(6)n(n+1)(n+2...

If `Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1,` then the value of `lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r))` is equal to

A

2

B

3

C

`(3)/(2)`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the sum \( \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{t_r} \) given that \( \sum_{r=1}^{n} t_r = \frac{1}{6} n(n+1)(n+2) \). ### Step 1: Find the expression for \( t_n \) We know that: \[ S_n = \sum_{r=1}^{n} t_r = \frac{1}{6} n(n+1)(n+2) \] To find \( t_n \), we can use the relationship: \[ t_n = S_n - S_{n-1} \] Now, calculate \( S_{n-1} \): \[ S_{n-1} = \frac{1}{6} (n-1)n(n+1) \] Now, substituting into the equation for \( t_n \): \[ t_n = S_n - S_{n-1} = \frac{1}{6} n(n+1)(n+2) - \frac{1}{6} (n-1)n(n+1) \] ### Step 2: Simplify \( t_n \) Let's simplify \( t_n \): \[ t_n = \frac{1}{6} \left[ n(n+1)(n+2) - (n-1)n(n+1) \right] \] \[ = \frac{1}{6} \left[ n(n+1) \left( (n+2) - (n-1) \right) \right] \] \[ = \frac{1}{6} \left[ n(n+1)(3) \right] \] \[ = \frac{1}{2} n(n+1) \] ### Step 3: Find \( \sum_{r=1}^{n} \frac{1}{t_r} \) Now we can express \( \sum_{r=1}^{n} \frac{1}{t_r} \): \[ \sum_{r=1}^{n} \frac{1}{t_r} = \sum_{r=1}^{n} \frac{1}{\frac{1}{2} r(r+1)} = 2 \sum_{r=1}^{n} \frac{1}{r(r+1)} \] ### Step 4: Simplify the sum \( \sum_{r=1}^{n} \frac{1}{r(r+1)} \) Using partial fractions: \[ \frac{1}{r(r+1)} = \frac{1}{r} - \frac{1}{r+1} \] Thus, \[ \sum_{r=1}^{n} \frac{1}{r(r+1)} = \sum_{r=1}^{n} \left( \frac{1}{r} - \frac{1}{r+1} \right) \] This is a telescoping series: \[ = 1 - \frac{1}{n+1} = \frac{n}{n+1} \] ### Step 5: Substitute back into the limit Now substituting back: \[ \sum_{r=1}^{n} \frac{1}{t_r} = 2 \cdot \frac{n}{n+1} \] ### Step 6: Find the limit Now we need to find: \[ \lim_{n \to \infty} 2 \cdot \frac{n}{n+1} = \lim_{n \to \infty} 2 \cdot \frac{1}{1 + \frac{1}{n}} = 2 \cdot 1 = 2 \] ### Final Answer Thus, the value of \( \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{t_r} \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 61

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 63

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

The value of Sigma_(r=1)^(n)(-1)^(r+1)(""^(n)C_(r))/(r+1)) is equal to

If sum_(r=1)^(n)a_(r)=(1)/(6)n(n+1)(n+2) for all n>=1 then lim_(n rarr oo)sum_(r=1)^(n)(1)/(a_(r)) is

NTA MOCK TESTS-NTA JEE MOCK TEST 62-MATHEMATICS
  1. The greatest term in the expansion of (3+2x)^(51), where x=(1)/(5), is

    Text Solution

    |

  2. If Sigma(r=1)^(n)t(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value o...

    Text Solution

    |

  3. If (pi)/(2)lt alpha lt (3pi)/(4), then sqrt(2tan alpha+(1)/(cos^(2)alp...

    Text Solution

    |

  4. The sum of all the solutions in [0, 100] for the equation sin pi x+cos...

    Text Solution

    |

  5. If f(x)=tan^(-1)((ln(e//x^(3)))/(ln (ex^(3))))+tan^(-1)(ln(e^(4)x^(3))...

    Text Solution

    |

  6. The function f(x)=(sinx)^(tan^(2)x) is not defined at x=(pi)/(2). The ...

    Text Solution

    |

  7. Which of the following statements is not a tautology?

    Text Solution

    |

  8. The area between the curves x=4y-y^(2) and 0 is lambda square units, t...

    Text Solution

    |

  9. If I(n)=int(0)^(2)(2dx)/((1-x^(n))), then the value of lim(nrarroo)I(n...

    Text Solution

    |

  10. The solution of the differential equation (1-x^(2))(dy)/(dx)-xy=1 is (...

    Text Solution

    |

  11. The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)...

    Text Solution

    |

  12. The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C ...

    Text Solution

    |

  13. Let L(1):x=y=z and L(2)=x-1=y-2=z-3 be two lines. The foot of perpendi...

    Text Solution

    |

  14. If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3...

    Text Solution

    |

  15. If A is a skew symmetric matrix of order 3, B is a 3xx1 column matrix ...

    Text Solution

    |

  16. Let P(1),P(2) and P(3) are the probabilities of a student passing thre...

    Text Solution

    |

  17. Let A-=(6,7),B-=(2,3)a n dC-=(-2,1) be the vertices of a triangle. Fin...

    Text Solution

    |

  18. If the chord of contact of the tangents from the point (alpha, beta) t...

    Text Solution

    |

  19. Tangents are drawn at the end points of a normal chord of the parabola...

    Text Solution

    |

  20. Find the value of k for which the point P(2, k) on the ellipse x^2 +2y...

    Text Solution

    |