Home
Class 12
MATHS
If veca, vecb and vecc are three vectors...

If `veca, vecb and vecc` are three vectors, such that `|veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0` and the angle between `vecb and vecc` is `(pi)/(3)`, then the value of `|veca xx (2vecb - 3 vecc)|` is equal to

A

`12sqrt3`

B

`6sqrt3`

C

`3sqrt3`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\vec{a} \times (2\vec{b} - 3\vec{c})|\). We will follow these steps: ### Step 1: Calculate the Magnitude of the Vector \(2\vec{b} - 3\vec{c}\) We know the magnitudes of the vectors: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 3\) - \(|\vec{c}| = 4\) We also know that \(\vec{a} \cdot \vec{b} = 0\) and \(\vec{a} \cdot \vec{c} = 0\), which means \(\vec{a}\) is orthogonal to both \(\vec{b}\) and \(\vec{c}\). The angle between \(\vec{b}\) and \(\vec{c}\) is \(\frac{\pi}{3}\) (or 60 degrees). We can calculate the dot product \(\vec{b} \cdot \vec{c}\) using the formula: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos\theta = 3 \cdot 4 \cdot \cos\left(\frac{\pi}{3}\right) = 12 \cdot \frac{1}{2} = 6 \] Now, we can find the magnitude of the vector \(2\vec{b} - 3\vec{c}\): \[ |2\vec{b} - 3\vec{c}|^2 = |2\vec{b}|^2 + |-3\vec{c}|^2 - 2(2\vec{b}) \cdot (-3\vec{c}) \] Calculating each term: - \(|2\vec{b}|^2 = (2 \cdot 3)^2 = 36\) - \(|-3\vec{c}|^2 = (3 \cdot 4)^2 = 144\) - \(2(2\vec{b}) \cdot (-3\vec{c}) = -12 \cdot 6 = -72\) Putting it all together: \[ |2\vec{b} - 3\vec{c}|^2 = 36 + 144 + 72 = 252 \] Thus, \[ |2\vec{b} - 3\vec{c}| = \sqrt{252} = 6\sqrt{7} \] ### Step 2: Calculate the Angle Between \(\vec{a}\) and \(2\vec{b} - 3\vec{c}\) Since \(\vec{a}\) is orthogonal to both \(\vec{b}\) and \(\vec{c}\), the angle between \(\vec{a}\) and \(2\vec{b} - 3\vec{c}\) can be found using the dot product: \[ \vec{a} \cdot (2\vec{b} - 3\vec{c}) = 2(\vec{a} \cdot \vec{b}) - 3(\vec{a} \cdot \vec{c}) = 0 - 0 = 0 \] This means that the angle \(\theta\) between \(\vec{a}\) and \(2\vec{b} - 3\vec{c}\) is \(\frac{\pi}{2}\) (90 degrees). ### Step 3: Calculate the Magnitude of the Cross Product The magnitude of the cross product is given by: \[ |\vec{a} \times (2\vec{b} - 3\vec{c})| = |\vec{a}| |2\vec{b} - 3\vec{c}| \sin\theta \] Substituting the values we have: - \(|\vec{a}| = 2\) - \(|2\vec{b} - 3\vec{c}| = 6\sqrt{7}\) - \(\sin\left(\frac{\pi}{2}\right) = 1\) Thus, \[ |\vec{a} \times (2\vec{b} - 3\vec{c})| = 2 \cdot 6\sqrt{7} \cdot 1 = 12\sqrt{7} \] ### Final Answer The value of \(|\vec{a} \times (2\vec{b} - 3\vec{c})|\) is \(12\sqrt{7}\). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 61

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 63

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb,vecc are unit vectors such that veca.vecb = 0= veca.vecc and the angle between vecb and vecc is pi//3 then the value of |vecaxxvecb -veca xx vecc| is

If veca,vecb,vecc are three vectors such that |veca|=2,|vecb|=4,|vecc|=4,vecb.vecc=0,vecb.veca=vecc.veca , then find the value of |veca+veca-vecc|

If veca, vecb, vecc are unit vectors such that veca. Vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)=vecc=0 then (vecaxxvecb)xxvecc is

NTA MOCK TESTS-NTA JEE MOCK TEST 62-MATHEMATICS
  1. The function f(x)=(sinx)^(tan^(2)x) is not defined at x=(pi)/(2). The ...

    Text Solution

    |

  2. Which of the following statements is not a tautology?

    Text Solution

    |

  3. The area between the curves x=4y-y^(2) and 0 is lambda square units, t...

    Text Solution

    |

  4. If I(n)=int(0)^(2)(2dx)/((1-x^(n))), then the value of lim(nrarroo)I(n...

    Text Solution

    |

  5. The solution of the differential equation (1-x^(2))(dy)/(dx)-xy=1 is (...

    Text Solution

    |

  6. The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)...

    Text Solution

    |

  7. The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C ...

    Text Solution

    |

  8. Let L(1):x=y=z and L(2)=x-1=y-2=z-3 be two lines. The foot of perpendi...

    Text Solution

    |

  9. If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3...

    Text Solution

    |

  10. If A is a skew symmetric matrix of order 3, B is a 3xx1 column matrix ...

    Text Solution

    |

  11. Let P(1),P(2) and P(3) are the probabilities of a student passing thre...

    Text Solution

    |

  12. Let A-=(6,7),B-=(2,3)a n dC-=(-2,1) be the vertices of a triangle. Fin...

    Text Solution

    |

  13. If the chord of contact of the tangents from the point (alpha, beta) t...

    Text Solution

    |

  14. Tangents are drawn at the end points of a normal chord of the parabola...

    Text Solution

    |

  15. Find the value of k for which the point P(2, k) on the ellipse x^2 +2y...

    Text Solution

    |

  16. The value of lim(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal ...

    Text Solution

    |

  17. Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)], where x, y, z in N. If |adj(a...

    Text Solution

    |

  18. If m numer of integers greater than 7000 can be formed with the digits...

    Text Solution

    |

  19. Let z=x+iy and w=u+iv be two complex numbers, such that |z|=|w|=1 and ...

    Text Solution

    |

  20. A survey shows that 69% students like mathematics, whereas 75% like ch...

    Text Solution

    |