Home
Class 12
MATHS
Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)],...

Let matrix `A=[(x,y,-z),(1,2,3),(1,1,2)]`, where `x, y, z in N`. If `|adj(adj (adj(adjA)))|=4^(8).5^(16)`, then the number of such matrices A is equal to (where, `|M|` represents determinant of a matrix M)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of matrices \( A \) of the form \[ A = \begin{pmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix} \] where \( x, y, z \in \mathbb{N} \) (natural numbers), given that \[ |adj(adj(adj(adj(A))))| = 4^8 \cdot 5^{16}. \] ### Step 1: Understanding the Determinant of the Adjoint We know that for a \( 3 \times 3 \) matrix \( A \): \[ |adj(A)| = |A|^{n-1} \] where \( n \) is the order of the matrix. Here, \( n = 3 \), so: \[ |adj(A)| = |A|^{2}. \] ### Step 2: Finding the Determinant of the Fourth Adjoint Applying this repeatedly, we have: \[ |adj(adj(A))| = |adj(A)|^{2} = |A|^{4}, \] \[ |adj(adj(adj(A)))| = |adj(adj(A))|^{2} = |A|^{8}, \] \[ |adj(adj(adj(adj(A))))| = |adj(adj(adj(A)))|^{2} = |A|^{16}. \] ### Step 3: Setting Up the Equation From the problem, we have: \[ |adj(adj(adj(adj(A))))| = |A|^{16} = 4^8 \cdot 5^{16}. \] ### Step 4: Simplifying the Right Side We can express \( 4^8 \) as \( (2^2)^8 = 2^{16} \), so: \[ |A|^{16} = 2^{16} \cdot 5^{16}. \] Taking the 16th root on both sides gives: \[ |A| = 2 \cdot 5 = 10. \] ### Step 5: Finding the Determinant of Matrix \( A \) Next, we compute the determinant of \( A \): \[ |A| = \begin{vmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{vmatrix}. \] Expanding the determinant along the first row: \[ |A| = x \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} - y \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - z \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix}. \] Calculating the minors: 1. \( \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2)(2) - (3)(1) = 4 - 3 = 1 \) 2. \( \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} = (1)(2) - (3)(1) = 2 - 3 = -1 \) 3. \( \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = (1)(1) - (2)(1) = 1 - 2 = -1 \) Thus, we have: \[ |A| = x(1) - y(-1) - z(-1) = x + y + z. \] ### Step 6: Setting the Determinant Equal to 10 Now we set the determinant equal to 10: \[ x + y + z = 10. \] ### Step 7: Counting the Natural Number Solutions We need to find the number of solutions in natural numbers (positive integers) for the equation \( x + y + z = 10 \). Using the stars and bars combinatorial method, the number of solutions in natural numbers is given by: \[ \text{Number of solutions} = \binom{n-1}{k-1} = \binom{10-1}{3-1} = \binom{9}{2}. \] Calculating \( \binom{9}{2} \): \[ \binom{9}{2} = \frac{9 \times 8}{2 \times 1} = 36. \] ### Conclusion Thus, the number of such matrices \( A \) is \( \boxed{36} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 61

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 63

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

Let matrix A=[[x,y,-z1,2,31,1,2]] where x,y,z varepsilon N. If det.,(adj(adj.A))=2^(8)*(3^(4)) then the number of such matrices A is :

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] where x,y, z in N . If det. (adj. (adj. A)) =2^(8)*3^(4) then the number of such matrices A is : [Note : adj. A denotes adjoint of square matrix A.]

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

Let A=[a_(ij)]_(5xx5) is a matrix such that a_(ij)={(3,AA i= j),(0,Aai ne j):} . If |(adj(adjA))/(3)|=(sqrt3)^(lambda), then lambda is equal to (where, adj(M) represents the adjoint matrix of matrix M)

If A={:[(1,2,-1),(-1,2,2),(2,-1,1)],:} then : |adj(adj.A)|=

A, B and C are three square matrices of order 3 such that A= diag. (x, y, x), det. (B)=4 and det. (C)=2 , where x, y, z in I^(+) . If det. (adj. (adj. (ABC))) =2^(16)xx3^(8)xx7^(4) , then the number of distinct possible matrices A is ________ .

Let A=[a_("ij")] be a matrix of order 2 where a_("ij") in {-1, 0, 1} and adj. A=-A . If det. (A)=-1 , then the number of such matrices is ______ .

Let A be a 3xx3 real matrix. If det(2 Adj(2 Adj(Adj (2A)))) = 2^(41) , then the value of det (A^2) equals _______

NTA MOCK TESTS-NTA JEE MOCK TEST 62-MATHEMATICS
  1. The function f(x)=(sinx)^(tan^(2)x) is not defined at x=(pi)/(2). The ...

    Text Solution

    |

  2. Which of the following statements is not a tautology?

    Text Solution

    |

  3. The area between the curves x=4y-y^(2) and 0 is lambda square units, t...

    Text Solution

    |

  4. If I(n)=int(0)^(2)(2dx)/((1-x^(n))), then the value of lim(nrarroo)I(n...

    Text Solution

    |

  5. The solution of the differential equation (1-x^(2))(dy)/(dx)-xy=1 is (...

    Text Solution

    |

  6. The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)...

    Text Solution

    |

  7. The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C ...

    Text Solution

    |

  8. Let L(1):x=y=z and L(2)=x-1=y-2=z-3 be two lines. The foot of perpendi...

    Text Solution

    |

  9. If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3...

    Text Solution

    |

  10. If A is a skew symmetric matrix of order 3, B is a 3xx1 column matrix ...

    Text Solution

    |

  11. Let P(1),P(2) and P(3) are the probabilities of a student passing thre...

    Text Solution

    |

  12. Let A-=(6,7),B-=(2,3)a n dC-=(-2,1) be the vertices of a triangle. Fin...

    Text Solution

    |

  13. If the chord of contact of the tangents from the point (alpha, beta) t...

    Text Solution

    |

  14. Tangents are drawn at the end points of a normal chord of the parabola...

    Text Solution

    |

  15. Find the value of k for which the point P(2, k) on the ellipse x^2 +2y...

    Text Solution

    |

  16. The value of lim(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal ...

    Text Solution

    |

  17. Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)], where x, y, z in N. If |adj(a...

    Text Solution

    |

  18. If m numer of integers greater than 7000 can be formed with the digits...

    Text Solution

    |

  19. Let z=x+iy and w=u+iv be two complex numbers, such that |z|=|w|=1 and ...

    Text Solution

    |

  20. A survey shows that 69% students like mathematics, whereas 75% like ch...

    Text Solution

    |