Home
Class 12
MATHS
If 0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)...

If `0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)) and cos A+cosB=(1)/(sqrt2),` then A =

A

`15^(@)`

B

`30^(@)`

C

`45^(@)`

D

`22(1^(@))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of angle A given the equations involving sine and cosine. Given: 1. \( \sin A + \sin B = \sqrt{\frac{3}{2}} \) 2. \( \cos A + \cos B = \frac{1}{\sqrt{2}} \) We also know that \( 0 < A, B < \pi \). ### Step 1: Use the identities for sine and cosine sums We can use the identities for the sum of sine and cosine: - \( \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \) - \( \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \) Let \( S = \frac{A + B}{2} \) and \( D = \frac{A - B}{2} \). Then we can rewrite the equations as: 1. \( 2 \sin(S) \cos(D) = \sqrt{\frac{3}{2}} \) 2. \( 2 \cos(S) \cos(D) = \frac{1}{\sqrt{2}} \) ### Step 2: Solve for \( \cos(D) \) From the second equation, we can isolate \( \cos(D) \): \[ \cos(D) = \frac{1}{2\cos(S) \sqrt{2}} \] ### Step 3: Substitute \( \cos(D) \) into the first equation Substituting \( \cos(D) \) into the first equation gives: \[ 2 \sin(S) \cdot \frac{1}{2\cos(S) \sqrt{2}} = \sqrt{\frac{3}{2}} \] This simplifies to: \[ \frac{\sin(S)}{\cos(S) \sqrt{2}} = \sqrt{\frac{3}{2}} \] ### Step 4: Simplify and solve for \( \tan(S) \) Cross-multiplying gives: \[ \sin(S) = \sqrt{3} \cos(S) \] This implies: \[ \tan(S) = \sqrt{3} \] ### Step 5: Find the angle \( S \) The angle \( S \) that satisfies \( \tan(S) = \sqrt{3} \) is: \[ S = \frac{\pi}{3} \] ### Step 6: Find \( A + B \) Since \( S = \frac{A + B}{2} \): \[ A + B = 2S = \frac{2\pi}{3} \] ### Step 7: Use the cosine equation to find \( D \) Now using the second equation: \[ 2 \cos(S) \cos(D) = \frac{1}{\sqrt{2}} \] Substituting \( S = \frac{\pi}{3} \): \[ 2 \cdot \frac{1}{2} \cdot \cos(D) = \frac{1}{\sqrt{2}} \] This simplifies to: \[ \cos(D) = \frac{1}{\sqrt{2}} \] Thus, \( D = \frac{\pi}{4} \). ### Step 8: Find \( A \) and \( B \) Now we can find \( A \) and \( B \): \[ A = S + D = \frac{\pi}{3} + \frac{\pi}{4} = \frac{4\pi + 3\pi}{12} = \frac{7\pi}{12} \] \[ B = S - D = \frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi - 3\pi}{12} = \frac{\pi}{12} \] ### Final Answer Thus, the value of \( A \) is: \[ A = \frac{7\pi}{12} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 62

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 64

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If 0

If 0

If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)) , then the value of A+B is equal to

If 0ltAltBltpi,sinA-sinB=(1)/(sqrt(2)),cosA-cosB=sqrt((3)/(2)) , then A+B=

If (sinA)/(sinB)=(sqrt(3))/(2) and (cosA)/(cosB)=(sqrt(5))/(2) , 0 lt A, B lt (pi)/(2) then tanA+tanB is equal to :

If (sinA)/(sinB)=(sqrt(3))/2 and (cosA)/(cosB)=(sqrt(5))/2, 0 < A, B < pi/2, then tanA-tanB is equal to

In a !ABC , sin A + sin B + sin C = 1+ sqrt2 and ,cos A +cos B +cos C = sqrt2 if ,the triangle is

NTA MOCK TESTS-NTA JEE MOCK TEST 63-MATHEMATICS
  1. The area enclosed by the curve y^(2)=x^(4)(1-x^(2)) is

    Text Solution

    |

  2. Let x(1), x(2),….,x(n) be n observation such that sum(x(i))^(2)=400 an...

    Text Solution

    |

  3. The line L given by x/5 + y/b = 1 passes through the point (13,32).the...

    Text Solution

    |

  4. If 0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)) and cos A+cosB=(1)/(sqrt2), ...

    Text Solution

    |

  5. P(1) and P(2) are corresponding points on the ellipse (x^(2))/(16)+(y^...

    Text Solution

    |

  6. The direction ratios of the normal to the plane passing through the po...

    Text Solution

    |

  7. The line y=2x+c is tangent to the parabola y^(2)-4y-8x=4 at a point wh...

    Text Solution

    |

  8. Let f(x)=x^(2)-x+1, AA x ge (1)/(2), then the solution of the equation...

    Text Solution

    |

  9. what are the truth values of ( ~ p Rightarrow ~ q) and ~( ~ p Rightar...

    Text Solution

    |

  10. Let alpha, beta and gamma are the roots of the equation 2x^(2)+9x^(2)-...

    Text Solution

    |

  11. The value of lim(nrarroo)((e^((1)/(n)))/(n^(2))+(2e^((2)/(n)))/(n^(2))...

    Text Solution

    |

  12. The number of numbers, lying between 99 and 1000 that can be made from...

    Text Solution

    |

  13. If z(1+a)=b+ic and a^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1+...

    Text Solution

    |

  14. The value of lim(xtooo) ((3x-4)/(3x+2))^(((x+1)/3)) is

    Text Solution

    |

  15. If x^(y). y^(x)=16, then the value of (dy)/(dx) at (2, 2) is

    Text Solution

    |

  16. The ratio of the fifth term from the beginning to the fifth term from ...

    Text Solution

    |

  17. Let A and B are two independent events such that P(B)=(1)/(2) and P(An...

    Text Solution

    |

  18. Find the number of common tangent to the circles x^2+y^2+2x+8y-23=0 an...

    Text Solution

    |

  19. Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I, then the value...

    Text Solution

    |

  20. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |