Home
Class 12
MATHS
Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such...

Let `A=[(0, 2y,z),(x,y,-z),(x,-y,z)]` such that `A^(T)A=I`, then the value of `x^(2)+y^(2)+z^(2)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 + z^2 \) given the matrix \( A \) such that \( A^T A = I \). ### Step-by-Step Solution: 1. **Define the Matrix \( A \)**: \[ A = \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix} \] 2. **Calculate the Transpose of \( A \)**: The transpose \( A^T \) is obtained by swapping rows and columns: \[ A^T = \begin{pmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{pmatrix} \] 3. **Multiply \( A^T \) and \( A \)**: We need to compute \( A^T A \): \[ A^T A = \begin{pmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{pmatrix} \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix} \] We will calculate each entry of the resulting matrix. 4. **Calculate Each Entry of \( A^T A \)**: - **First Row**: - First column: \( 0 \cdot 0 + x \cdot x + x \cdot x = 2x^2 \) - Second column: \( 0 \cdot 2y + x \cdot y + x \cdot (-y) = 0 \) - Third column: \( 0 \cdot z + x \cdot (-z) + x \cdot z = 0 \) - **Second Row**: - First column: \( 2y \cdot 0 + y \cdot x + (-y) \cdot x = 0 \) - Second column: \( 2y \cdot 2y + y \cdot y + (-y) \cdot (-y) = 4y^2 + y^2 + y^2 = 6y^2 \) - Third column: \( 2y \cdot z + y \cdot (-z) + (-y) \cdot z = 2yz - yz - yz = 0 \) - **Third Row**: - First column: \( z \cdot 0 + (-z) \cdot x + z \cdot x = 0 \) - Second column: \( z \cdot 2y + (-z) \cdot y + z \cdot (-y) = 2yz - yz - yz = 0 \) - Third column: \( z \cdot z + (-z) \cdot (-z) + z \cdot z = z^2 + z^2 + z^2 = 3z^2 \) 5. **Resulting Matrix**: Thus, we have: \[ A^T A = \begin{pmatrix} 2x^2 & 0 & 0 \\ 0 & 6y^2 & 0 \\ 0 & 0 & 3z^2 \end{pmatrix} \] 6. **Set Equal to Identity Matrix**: Since \( A^T A = I \), we equate: \[ \begin{pmatrix} 2x^2 & 0 & 0 \\ 0 & 6y^2 & 0 \\ 0 & 0 & 3z^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] This gives us the equations: - \( 2x^2 = 1 \) → \( x^2 = \frac{1}{2} \) - \( 6y^2 = 1 \) → \( y^2 = \frac{1}{6} \) - \( 3z^2 = 1 \) → \( z^2 = \frac{1}{3} \) 7. **Calculate \( x^2 + y^2 + z^2 \)**: \[ x^2 + y^2 + z^2 = \frac{1}{2} + \frac{1}{6} + \frac{1}{3} \] To add these fractions, find a common denominator (which is 6): \[ = \frac{3}{6} + \frac{1}{6} + \frac{2}{6} = \frac{6}{6} = 1 \] ### Final Answer: \[ x^2 + y^2 + z^2 = 1 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 62

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 64

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let x,y,z in R and 2x+y+3z=20 then min.value of x^(2)+4y^(2)+z^(2) will be

If x+y+z=0, then the value of (x^2y^2+y^2z^2+z^2x^2)/(x^4+y^4+z^4) is :

If A=[(x,y,z),(y,z,x),(z,x,y)] and A^3=I_3 and xyz=2 and x+y+z gt 0 find the value of x^3+y^3+z^3 is

If x>0,y>0,z>0 and x+y+z=1 then the minimum value of (x)/(2-x)+(y)/(2-y)+(z)/(2-z) is

NTA MOCK TESTS-NTA JEE MOCK TEST 63-MATHEMATICS
  1. The area enclosed by the curve y^(2)=x^(4)(1-x^(2)) is

    Text Solution

    |

  2. Let x(1), x(2),….,x(n) be n observation such that sum(x(i))^(2)=400 an...

    Text Solution

    |

  3. The line L given by x/5 + y/b = 1 passes through the point (13,32).the...

    Text Solution

    |

  4. If 0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)) and cos A+cosB=(1)/(sqrt2), ...

    Text Solution

    |

  5. P(1) and P(2) are corresponding points on the ellipse (x^(2))/(16)+(y^...

    Text Solution

    |

  6. The direction ratios of the normal to the plane passing through the po...

    Text Solution

    |

  7. The line y=2x+c is tangent to the parabola y^(2)-4y-8x=4 at a point wh...

    Text Solution

    |

  8. Let f(x)=x^(2)-x+1, AA x ge (1)/(2), then the solution of the equation...

    Text Solution

    |

  9. what are the truth values of ( ~ p Rightarrow ~ q) and ~( ~ p Rightar...

    Text Solution

    |

  10. Let alpha, beta and gamma are the roots of the equation 2x^(2)+9x^(2)-...

    Text Solution

    |

  11. The value of lim(nrarroo)((e^((1)/(n)))/(n^(2))+(2e^((2)/(n)))/(n^(2))...

    Text Solution

    |

  12. The number of numbers, lying between 99 and 1000 that can be made from...

    Text Solution

    |

  13. If z(1+a)=b+ic and a^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1+...

    Text Solution

    |

  14. The value of lim(xtooo) ((3x-4)/(3x+2))^(((x+1)/3)) is

    Text Solution

    |

  15. If x^(y). y^(x)=16, then the value of (dy)/(dx) at (2, 2) is

    Text Solution

    |

  16. The ratio of the fifth term from the beginning to the fifth term from ...

    Text Solution

    |

  17. Let A and B are two independent events such that P(B)=(1)/(2) and P(An...

    Text Solution

    |

  18. Find the number of common tangent to the circles x^2+y^2+2x+8y-23=0 an...

    Text Solution

    |

  19. Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I, then the value...

    Text Solution

    |

  20. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |