Home
Class 12
MATHS
A point (alpha, beta, gamma) satisfies t...

A point `(alpha, beta, gamma)` satisfies the equation of the plane `3x+4y+7z=3.` The value of `beta`, such that `vecp=alphahati+betahatj+gammahatk` satisfies the relation `hatjxx(hatjxxvecp)=vec0`, is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( \beta \) such that the point \( (\alpha, \beta, \gamma) \) satisfies the equation of the plane \( 3x + 4y + 7z = 3 \) and the vector \( \vec{p} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \) satisfies the relation \( \hat{j} \times (\hat{j} \times \vec{p}) = \vec{0} \). ### Step 1: Use the plane equation The point \( (\alpha, \beta, \gamma) \) satisfies the plane equation: \[ 3\alpha + 4\beta + 7\gamma = 3 \quad \text{(Equation 1)} \] ### Step 2: Analyze the triple product condition The condition \( \hat{j} \times (\hat{j} \times \vec{p}) = \vec{0} \) implies that the vector \( \vec{p} \) must be parallel to \( \hat{j} \). This means that the \( \hat{i} \) and \( \hat{k} \) components of \( \vec{p} \) must be zero. ### Step 3: Calculate \( \hat{j} \cdot \vec{p} \) The vector \( \vec{p} \) can be expressed as: \[ \vec{p} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \] Now, we calculate the dot product \( \hat{j} \cdot \vec{p} \): \[ \hat{j} \cdot \vec{p} = \hat{j} \cdot (\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}) = \beta \] ### Step 4: Calculate \( \hat{j} \cdot \hat{j} \) We know that: \[ \hat{j} \cdot \hat{j} = 1 \] ### Step 5: Substitute into the triple product formula Using the property of the triple product, we have: \[ \hat{j} \times (\hat{j} \times \vec{p}) = (\hat{j} \cdot \vec{p}) \hat{j} - (\hat{j} \cdot \hat{j}) \vec{p} \] Substituting the values we calculated: \[ \hat{j} \times (\hat{j} \times \vec{p}) = \beta \hat{j} - \vec{p} \] Setting this equal to \( \vec{0} \): \[ \beta \hat{j} - \vec{p} = \vec{0} \] This implies: \[ \vec{p} = \beta \hat{j} \] ### Step 6: Equate components of \( \vec{p} \) From \( \vec{p} = \beta \hat{j} \), we can equate the components: - The \( \hat{i} \) component gives \( \alpha = 0 \) - The \( \hat{j} \) component gives \( \beta = \beta \) (which is consistent) - The \( \hat{k} \) component gives \( \gamma = 0 \) ### Step 7: Substitute back into the plane equation Substituting \( \alpha = 0 \) and \( \gamma = 0 \) into Equation 1: \[ 3(0) + 4\beta + 7(0) = 3 \] This simplifies to: \[ 4\beta = 3 \] ### Step 8: Solve for \( \beta \) Dividing both sides by 4: \[ \beta = \frac{3}{4} = 0.75 \] Thus, the required value of \( \beta \) is: \[ \boxed{0.75} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 63

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 65

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 find the value of (beta+gamma)(gamma+alpha)(alpha+beta)

If alpha,beta& gamma are the roots of the equation x^(3)+px+q=0, then the value of the det[[alpha,beta,gammabeta,gamma,alphagamma,alpha,beta]] is

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha,beta,gamma are the roots if the equation x^3-3x+11=0 then the equation whose roots are (alpha+beta),(beta+gamma),(gamma+alpha is

If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 tan3x , then tanalpha+tanbeta+tangamma+tandelta is equal to :

If alpha , beta , gamma are roots of x^(3)-3x+11=0 then equation whose roots are beta + gamma , alpha + beta , alpha + gamma is

NTA MOCK TESTS-NTA JEE MOCK TEST 64-MATHEMATICS
  1. If the mean of a set of observations x(1),x(2), …,x(n)" is " bar(X), t...

    Text Solution

    |

  2. If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b], then

    Text Solution

    |

  3. The tops of two poles of height 40 m and 25 m are connected by a wire....

    Text Solution

    |

  4. The equation of the image of line y=x wire respect to the line mirror ...

    Text Solution

    |

  5. The value of lim(xrarroo)[(1^((1)/(x))+2^((1)/(x))+3^((1)/(x))+…+10^((...

    Text Solution

    |

  6. Two mutually perpendicular tangents of the parabola y^(2)=4ax at the p...

    Text Solution

    |

  7. If int(0)^(1)x^(11)e^(-x^(24))dx=A, and int(0)^(1)x^(3)e^(-x^(8))dx=B,...

    Text Solution

    |

  8. Consider a square matrix A or order 2 which has its elements as 0, 1, ...

    Text Solution

    |

  9. If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):}, t...

    Text Solution

    |

  10. Consider the line L-=(x-1)/(2)=(y+2)/(3)=(z-7)/(6). Point P(2, -5, 0) ...

    Text Solution

    |

  11. If three fair dice are thrown and the sum is an odd number, then the p...

    Text Solution

    |

  12. If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C,...

    Text Solution

    |

  13. The locus of the mid - points of the parallel chords with slope m of t...

    Text Solution

    |

  14. If y=mx+5 is a tangent to x^(3)y^(3)=ax^(3)+by^(3) at point (1, 2), th...

    Text Solution

    |

  15. The differential equation (dy)/(dx)=(sqrt(1-y^(2)))/(y) represents the...

    Text Solution

    |

  16. If (3+cot80^(@)cot 20^(@))/(cot80^(@)+cot20^(@))=tan.(pi)/(k), then th...

    Text Solution

    |

  17. If z is a complex number, then the area of the triangle (in sq. units)...

    Text Solution

    |

  18. A point (alpha, beta, gamma) satisfies the equation of the plane 3x+4y...

    Text Solution

    |

  19. The value fo the integral I=int(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is...

    Text Solution

    |

  20. The number of ordered pairs of positive integers (a, b), such that the...

    Text Solution

    |