Home
Class 12
MATHS
The value fo the integral I=int(0)^(oo)(...

The value fo the integral `I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2)))` is equal to `kpi`, then the value of 16k is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\infty} \frac{dx}{(1+x^{2020})(1+x^2)}, \] we will use a substitution and properties of integrals to evaluate it step by step. ### Step 1: Substitution Let \( x = \tan \theta \). Then, \( dx = \sec^2 \theta \, d\theta \). The limits change as follows: - When \( x = 0 \), \( \theta = 0 \). - When \( x \to \infty \), \( \theta \to \frac{\pi}{2} \). Thus, the integral becomes: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \theta \, d\theta}{(1+\tan^{2020} \theta)(1+\tan^2 \theta)}. \] ### Step 2: Simplifying the Denominator Recall that \( 1 + \tan^2 \theta = \sec^2 \theta \). Therefore, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \theta \, d\theta}{(1+\tan^{2020} \theta)\sec^2 \theta} = \int_0^{\frac{\pi}{2}} \frac{d\theta}{1+\tan^{2020} \theta}. \] ### Step 3: Using the Property of Integrals Now we will use the property of integrals: \[ \int_0^{\frac{\pi}{2}} f(\theta) \, d\theta = \int_0^{\frac{\pi}{2}} f\left(\frac{\pi}{2} - \theta\right) \, d\theta. \] For our case, let \( f(\theta) = \frac{1}{1+\tan^{2020} \theta} \). Then, \[ \int_0^{\frac{\pi}{2}} f\left(\frac{\pi}{2} - \theta\right) \, d\theta = \int_0^{\frac{\pi}{2}} \frac{1}{1+\cot^{2020} \theta} \, d\theta. \] ### Step 4: Simplifying Further Using the identity \( \cot \theta = \frac{1}{\tan \theta} \), we can rewrite the integral: \[ \int_0^{\frac{\pi}{2}} \frac{1}{1+\cot^{2020} \theta} \, d\theta = \int_0^{\frac{\pi}{2}} \frac{\tan^{2020} \theta}{\tan^{2020} \theta + 1} \, d\theta. \] ### Step 5: Adding the Two Integrals Now we have: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{1}{1+\tan^{2020} \theta} + \frac{\tan^{2020} \theta}{\tan^{2020} \theta + 1} \right) d\theta = \int_0^{\frac{\pi}{2}} 1 \, d\theta = \frac{\pi}{2}. \] ### Step 6: Solving for \( I \) Thus, \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}. \] ### Step 7: Finding \( k \) Given that \( I = k\pi \), we have: \[ k\pi = \frac{\pi}{4} \implies k = \frac{1}{4}. \] ### Step 8: Finding \( 16k \) Finally, we compute: \[ 16k = 16 \times \frac{1}{4} = 4. \] Thus, the value of \( 16k \) is \[ \boxed{4}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 63

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 65

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of definite integral int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2))) equal to:

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

The value of definite integral int_(0)^(oo)In(x+(1)/(x))(dx)/(1+x^(2)) is equal to

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of int_(0)^(oo)(xdx)/((1+x)(1+x^(2))) is equal to

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

NTA MOCK TESTS-NTA JEE MOCK TEST 64-MATHEMATICS
  1. If the mean of a set of observations x(1),x(2), …,x(n)" is " bar(X), t...

    Text Solution

    |

  2. If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b], then

    Text Solution

    |

  3. The tops of two poles of height 40 m and 25 m are connected by a wire....

    Text Solution

    |

  4. The equation of the image of line y=x wire respect to the line mirror ...

    Text Solution

    |

  5. The value of lim(xrarroo)[(1^((1)/(x))+2^((1)/(x))+3^((1)/(x))+…+10^((...

    Text Solution

    |

  6. Two mutually perpendicular tangents of the parabola y^(2)=4ax at the p...

    Text Solution

    |

  7. If int(0)^(1)x^(11)e^(-x^(24))dx=A, and int(0)^(1)x^(3)e^(-x^(8))dx=B,...

    Text Solution

    |

  8. Consider a square matrix A or order 2 which has its elements as 0, 1, ...

    Text Solution

    |

  9. If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):}, t...

    Text Solution

    |

  10. Consider the line L-=(x-1)/(2)=(y+2)/(3)=(z-7)/(6). Point P(2, -5, 0) ...

    Text Solution

    |

  11. If three fair dice are thrown and the sum is an odd number, then the p...

    Text Solution

    |

  12. If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C,...

    Text Solution

    |

  13. The locus of the mid - points of the parallel chords with slope m of t...

    Text Solution

    |

  14. If y=mx+5 is a tangent to x^(3)y^(3)=ax^(3)+by^(3) at point (1, 2), th...

    Text Solution

    |

  15. The differential equation (dy)/(dx)=(sqrt(1-y^(2)))/(y) represents the...

    Text Solution

    |

  16. If (3+cot80^(@)cot 20^(@))/(cot80^(@)+cot20^(@))=tan.(pi)/(k), then th...

    Text Solution

    |

  17. If z is a complex number, then the area of the triangle (in sq. units)...

    Text Solution

    |

  18. A point (alpha, beta, gamma) satisfies the equation of the plane 3x+4y...

    Text Solution

    |

  19. The value fo the integral I=int(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is...

    Text Solution

    |

  20. The number of ordered pairs of positive integers (a, b), such that the...

    Text Solution

    |