Home
Class 12
MATHS
Let g(x)=xf(x), where f(x)={{:(x^(2)sin....

Let `g(x)=xf(x)`, where `f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0):}`. At `x=0`,

A

g is differentiable but g' is not

B

g is differentiable while f is not differentiable

C

both f and g are non differentiable

D

g is differentiable and g' is continuous

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( g(x) = x f(x) \) where \( f(x) \) is defined as: \[ f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] ### Step 1: Define \( g(x) \) We can express \( g(x) \) for both cases: 1. For \( x \neq 0 \): \[ g(x) = x f(x) = x \cdot x^2 \sin\left(\frac{1}{x}\right) = x^3 \sin\left(\frac{1}{x}\right) \] 2. For \( x = 0 \): \[ g(0) = 0 \cdot f(0) = 0 \] Thus, we have: \[ g(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] ### Step 2: Find the derivative \( g'(x) \) To find \( g'(x) \) for \( x \neq 0 \), we will use the product rule: \[ g'(x) = \frac{d}{dx}(x^3) \cdot \sin\left(\frac{1}{x}\right) + x^3 \cdot \frac{d}{dx}\left(\sin\left(\frac{1}{x}\right)\right) \] Calculating each part: 1. The derivative of \( x^3 \) is \( 3x^2 \). 2. For \( \sin\left(\frac{1}{x}\right) \), using the chain rule: \[ \frac{d}{dx}\left(\sin\left(\frac{1}{x}\right)\right) = \cos\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right) = -\frac{\cos\left(\frac{1}{x}\right)}{x^2} \] Now substituting these into the product rule gives: \[ g'(x) = 3x^2 \sin\left(\frac{1}{x}\right) + x^3 \left(-\frac{\cos\left(\frac{1}{x}\right)}{x^2}\right) \] This simplifies to: \[ g'(x) = 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right) \] ### Step 3: Find \( g'(0) \) To find \( g'(0) \), we need to evaluate the limit: \[ g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h - 0} = \lim_{h \to 0} \frac{g(h)}{h} \] Substituting \( g(h) \): \[ g'(0) = \lim_{h \to 0} \frac{h^3 \sin\left(\frac{1}{h}\right)}{h} = \lim_{h \to 0} h^2 \sin\left(\frac{1}{h}\right) \] Since \( |\sin\left(\frac{1}{h}\right)| \leq 1 \), we have: \[ |h^2 \sin\left(\frac{1}{h}\right)| \leq |h^2| \] As \( h \to 0 \), \( h^2 \to 0 \). Therefore: \[ g'(0) = 0 \] ### Step 4: Continuity and Differentiability 1. \( g'(x) \) is defined for \( x \neq 0 \) as \( 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right) \). 2. At \( x = 0 \), we found \( g'(0) = 0 \). To check if \( g'(x) \) is continuous at \( x = 0 \): \[ \lim_{x \to 0} g'(x) = \lim_{x \to 0} \left(3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right)\right) \] Both terms approach \( 0 \) as \( x \to 0 \), hence: \[ \lim_{x \to 0} g'(x) = 0 = g'(0) \] Thus, \( g'(x) \) is continuous at \( x = 0 \). ### Conclusion - \( g(x) \) is differentiable at \( x = 0 \) and \( g'(0) = 0 \). - The function \( g(x) \) is differentiable everywhere, but \( f(x) \) is not differentiable at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 64

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 66

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

If f(x)={(x^(k) sin((1)/(x))",",x ne 0),(0",", x =0):} is continuous at x = 0, then

NTA MOCK TESTS-NTA JEE MOCK TEST 65-MATHEMATICS
  1. For two sets A and B, if n(A)=7, n(B)=13 and n (AnnB)=5, then the inco...

    Text Solution

    |

  2. The value of lim(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] deno...

    Text Solution

    |

  3. Let g(x)=xf(x), where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0)...

    Text Solution

    |

  4. Equivalent statement of the statement ''If 9 gt 10 then 3^(2)=5'' will...

    Text Solution

    |

  5. Let A be the foot of the perpendicular from the origin to the plane x-...

    Text Solution

    |

  6. Let veca, vecb and vecc are three non - collinear vectors in a plane s...

    Text Solution

    |

  7. If the system of equations 2x-3y+5z=12, 3xy+pz=q and x-7y+8z-17 is con...

    Text Solution

    |

  8. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  9. In the figure shown, OABC is a rectangle with OA=3 units, OC = 4 units...

    Text Solution

    |

  10. The line 2x-y+1=0 touches a circle at the point (2, 5) and the centre ...

    Text Solution

    |

  11. The locus of the point (x, y) whose distance from the line y=2x+2 is e...

    Text Solution

    |

  12. Let alpha and beta be the roots of x^(2)+x+1=0, then the equation whos...

    Text Solution

    |

  13. Let the integral I=int((2020)^(x+sin^(-1)(2020)^(x)))/(sqrt(1-(2020)^(...

    Text Solution

    |

  14. The integral I=int((pi)/(4))^((pi)/(2))sin^(6)xdx is satisfies

    Text Solution

    |

  15. The general solution of the differential equation (dy)/(dx)=2y tan x+t...

    Text Solution

    |

  16. If two points are taken on the mirror axis of the ellipse (x^(2))/(25)...

    Text Solution

    |

  17. If (-3, -1) is the largest interval in which the function f(x)=x^(3)+6...

    Text Solution

    |

  18. Let f(i)(x)=sin(2p(i)x) for i=1,2,3 & p(i) in N. If is given that the ...

    Text Solution

    |

  19. For any positive n, let f(n)=(4n+sqrt(4n^(2)-1))/(sqrt(2n+1)+sqrt(2n-1...

    Text Solution

    |

  20. If cos^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…)" "+sin^(-1)(x^(2)-(x^(4))/(2...

    Text Solution

    |