Home
Class 12
MATHS
The integral I=int((pi)/(4))^((pi)/(2))s...

The integral `I=int_((pi)/(4))^((pi)/(2))sin^(6)xdx` is satisfies

A

`I gt (pi)/(2)`

B

`I gt (pi)/(4)`

C

`I in ((pi)/(4), (pi)/(2))`

D

`I in ((pi)/(32), (pi)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^6 x \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^6 x \, dx \] 2. **Use the Power Reduction Formula**: We can express \(\sin^6 x\) using the identity \(\sin^2 x = \frac{1 - \cos 2x}{2}\): \[ \sin^6 x = (\sin^2 x)^3 = \left(\frac{1 - \cos 2x}{2}\right)^3 \] Expanding this gives: \[ \sin^6 x = \frac{(1 - \cos 2x)^3}{8} \] 3. **Expand the Cubic**: Now we expand \((1 - \cos 2x)^3\): \[ (1 - \cos 2x)^3 = 1 - 3\cos 2x + 3\cos^2 2x - \cos^3 2x \] Using \(\cos^2 2x = \frac{1 + \cos 4x}{2}\) and \(\cos^3 2x = \frac{3\cos 2x + \cos 6x}{4}\), we can substitute: \[ \cos^2 2x = \frac{1 + \cos 4x}{2} \] Thus: \[ (1 - \cos 2x)^3 = 1 - 3\cos 2x + \frac{3(1 + \cos 4x)}{2} - \frac{3\cos 2x + \cos 6x}{4} \] 4. **Combine Terms**: Combine all terms together: \[ = 1 - 3\cos 2x + \frac{3}{2} + \frac{3}{2}\cos 4x - \frac{3\cos 2x}{4} - \frac{\cos 6x}{4} \] Collecting like terms gives: \[ = \frac{5}{2} - \left(3 + \frac{3}{4}\right)\cos 2x + \frac{3}{2}\cos 4x - \frac{1}{4}\cos 6x \] 5. **Integrate**: Now we substitute this back into the integral: \[ I = \frac{1}{8} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{5}{2} - \frac{15}{4}\cos 2x + \frac{3}{2}\cos 4x - \frac{1}{4}\cos 6x\right) dx \] Integrating term by term: - The integral of a constant: \[ \int dx = x \] - The integral of \(\cos kx\): \[ \int \cos kx \, dx = \frac{\sin kx}{k} \] 6. **Evaluate the Integral**: Evaluating each term from \(\frac{\pi}{4}\) to \(\frac{\pi}{2}\): \[ I = \frac{1}{8} \left[ \frac{5}{2}x - \frac{15}{4} \cdot \frac{\sin 2x}{2} + \frac{3}{2} \cdot \frac{\sin 4x}{4} - \frac{1}{4} \cdot \frac{\sin 6x}{6} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \] 7. **Calculate the Limits**: Substitute the limits: - For \(x = \frac{\pi}{2}\): \[ \sin 2\left(\frac{\pi}{2}\right) = \sin \pi = 0, \quad \sin 4\left(\frac{\pi}{2}\right) = \sin 2\pi = 0, \quad \sin 6\left(\frac{\pi}{2}\right) = \sin 3\pi = 0 \] - For \(x = \frac{\pi}{4}\): \[ \sin 2\left(\frac{\pi}{4}\right) = \sin \frac{\pi}{2} = 1, \quad \sin 4\left(\frac{\pi}{4}\right) = \sin \pi = 0, \quad \sin 6\left(\frac{\pi}{4}\right) = \sin \frac{3\pi}{2} = -1 \] 8. **Final Calculation**: \[ I = \frac{1}{8} \left[ 0 - \left(\frac{5}{2} \cdot \frac{\pi}{4} - \frac{15}{4} \cdot \frac{1}{2} + 0 + \frac{1}{24}\right) \right] \] Simplifying gives: \[ I = \frac{1}{8} \left[ -\frac{5\pi}{8} + \frac{15}{8} + \frac{1}{24} \right] \] After simplifying, we find: \[ I = \frac{11}{48} \] ### Final Answer: \[ I = \frac{11}{48} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 64

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 66

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int_(-(pi)/(2))^(pi/2)x sin^(2)xdx

int_(0)^((pi)/(2))sin^(2)xdx

Evaluate int_(-(pi)/(4))^((pi)/(4))sin^(2)xdx

Evaluate int_(-(pi)/(2))^((pi)/(2))sin^(5)xdx

int_((-pi)/(4))^((pi)/(2))e^(-x)sin xdx=

Examples: int_(-(pi)/(2))^((pi)/(2))sin^(2)xdx

By using the properties of definite integrals, evaluate the integrals int_((-pi)/(2))^((pi)/(2))sin^(7)xdx

int_(-pi/4)^( pi/4)x^(3)sin^(2)xdx

Write the value of the following integral: int_(-(pi)/(2))^((pi)/(2))sin^(5)xdx

int_(-(pi)/(2))^((pi)/(2))sin^(4)x*cos^(6)xdx =

NTA MOCK TESTS-NTA JEE MOCK TEST 65-MATHEMATICS
  1. Let g(x)=xf(x), where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0)...

    Text Solution

    |

  2. Equivalent statement of the statement ''If 9 gt 10 then 3^(2)=5'' will...

    Text Solution

    |

  3. Let A be the foot of the perpendicular from the origin to the plane x-...

    Text Solution

    |

  4. Let veca, vecb and vecc are three non - collinear vectors in a plane s...

    Text Solution

    |

  5. If the system of equations 2x-3y+5z=12, 3xy+pz=q and x-7y+8z-17 is con...

    Text Solution

    |

  6. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  7. In the figure shown, OABC is a rectangle with OA=3 units, OC = 4 units...

    Text Solution

    |

  8. The line 2x-y+1=0 touches a circle at the point (2, 5) and the centre ...

    Text Solution

    |

  9. The locus of the point (x, y) whose distance from the line y=2x+2 is e...

    Text Solution

    |

  10. Let alpha and beta be the roots of x^(2)+x+1=0, then the equation whos...

    Text Solution

    |

  11. Let the integral I=int((2020)^(x+sin^(-1)(2020)^(x)))/(sqrt(1-(2020)^(...

    Text Solution

    |

  12. The integral I=int((pi)/(4))^((pi)/(2))sin^(6)xdx is satisfies

    Text Solution

    |

  13. The general solution of the differential equation (dy)/(dx)=2y tan x+t...

    Text Solution

    |

  14. If two points are taken on the mirror axis of the ellipse (x^(2))/(25)...

    Text Solution

    |

  15. If (-3, -1) is the largest interval in which the function f(x)=x^(3)+6...

    Text Solution

    |

  16. Let f(i)(x)=sin(2p(i)x) for i=1,2,3 & p(i) in N. If is given that the ...

    Text Solution

    |

  17. For any positive n, let f(n)=(4n+sqrt(4n^(2)-1))/(sqrt(2n+1)+sqrt(2n-1...

    Text Solution

    |

  18. If cos^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…)" "+sin^(-1)(x^(2)-(x^(4))/(2...

    Text Solution

    |

  19. A fair coin is tossed once. If it shows head, then 2 fiar disc are thr...

    Text Solution

    |

  20. The area bounded by |x|+|y|=1 and y ge x^(2) in the first quadrant is ...

    Text Solution

    |