Home
Class 12
MATHS
For any positive n, let f(n)=(4n+sqrt(4n...

For any positive n, let `f(n)=(4n+sqrt(4n^(2)-1))/(sqrt(2n+1)+sqrt(2n-1))`. Then `((Sigma_(k=1)^(40)f(k))/(100))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the function \( f(n) \) and then compute the sum \( \sum_{k=1}^{40} f(k) \) divided by 100. ### Step 1: Simplifying \( f(n) \) Given: \[ f(n) = \frac{4n + \sqrt{4n^2 - 1}}{\sqrt{2n + 1} + \sqrt{2n - 1}} \] First, we can rationalize the denominator. The denominator is \( \sqrt{2n + 1} + \sqrt{2n - 1} \). We multiply the numerator and denominator by the conjugate of the denominator, which is \( \sqrt{2n + 1} - \sqrt{2n - 1} \): \[ f(n) = \frac{(4n + \sqrt{4n^2 - 1})(\sqrt{2n + 1} - \sqrt{2n - 1})}{(\sqrt{2n + 1} + \sqrt{2n - 1})(\sqrt{2n + 1} - \sqrt{2n - 1})} \] ### Step 2: Simplifying the Denominator The denominator simplifies as follows: \[ (\sqrt{2n + 1})^2 - (\sqrt{2n - 1})^2 = (2n + 1) - (2n - 1) = 2 \] ### Step 3: Simplifying the Numerator Now, we simplify the numerator: \[ (4n + \sqrt{4n^2 - 1})(\sqrt{2n + 1} - \sqrt{2n - 1}) \] Expanding this gives: \[ 4n(\sqrt{2n + 1} - \sqrt{2n - 1}) + \sqrt{4n^2 - 1}(\sqrt{2n + 1} - \sqrt{2n - 1}) \] ### Step 4: Further Simplifying \( f(n) \) After rationalizing, we can express \( f(n) \) as: \[ f(n) = \frac{4n(\sqrt{2n + 1} - \sqrt{2n - 1}) + \sqrt{4n^2 - 1}(\sqrt{2n + 1} - \sqrt{2n - 1})}{2} \] ### Step 5: Finding \( \sum_{k=1}^{40} f(k) \) Now, we need to compute: \[ \sum_{k=1}^{40} f(k) \] Using the simplified form of \( f(n) \): \[ f(n) = \frac{(2n + 1)^{3/2} - (2n - 1)^{3/2}}{2} \] We can express the sum as: \[ \sum_{k=1}^{40} f(k) = \sum_{k=1}^{40} \frac{(2k + 1)^{3/2} - (2k - 1)^{3/2}}{2} \] This is a telescoping series. Most terms will cancel out, leaving us with: \[ \frac{1}{2} \left( (2 \cdot 40 + 1)^{3/2} - (2 \cdot 1 - 1)^{3/2} \right) \] Calculating the remaining terms: \[ = \frac{1}{2} \left( 81^{3/2} - 1^{3/2} \right) = \frac{1}{2} \left( 729 - 1 \right) = \frac{728}{2} = 364 \] ### Step 6: Final Calculation Now, we divide by 100: \[ \frac{364}{100} = 3.64 \] ### Final Answer Thus, the value of \( \frac{\sum_{k=1}^{40} f(k)}{100} \) is \( \boxed{3.64} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 64

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 66

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr4)(sqrt(2n+1)-3)/(sqrt(n-1)-sqrt(2))

For any integer n,the argument of ((sqrt(3)+i)^(4n+1))/((1-i sqrt(3))^(4n))

For each positive integer n, let f(n+1)=n(-1)^(n+1)-2f(n) and f(1)=(2010)* Then sum_(k=1)^(2009)f(K) is equal to 335(b)336(c)331(d)333

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

If n is a positive interger,them (sqrt(5)+1)^(2n+1)-(sqrt(5)-1)^(2n-1) is

For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

NTA MOCK TESTS-NTA JEE MOCK TEST 65-MATHEMATICS
  1. Let g(x)=xf(x), where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0)...

    Text Solution

    |

  2. Equivalent statement of the statement ''If 9 gt 10 then 3^(2)=5'' will...

    Text Solution

    |

  3. Let A be the foot of the perpendicular from the origin to the plane x-...

    Text Solution

    |

  4. Let veca, vecb and vecc are three non - collinear vectors in a plane s...

    Text Solution

    |

  5. If the system of equations 2x-3y+5z=12, 3xy+pz=q and x-7y+8z-17 is con...

    Text Solution

    |

  6. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  7. In the figure shown, OABC is a rectangle with OA=3 units, OC = 4 units...

    Text Solution

    |

  8. The line 2x-y+1=0 touches a circle at the point (2, 5) and the centre ...

    Text Solution

    |

  9. The locus of the point (x, y) whose distance from the line y=2x+2 is e...

    Text Solution

    |

  10. Let alpha and beta be the roots of x^(2)+x+1=0, then the equation whos...

    Text Solution

    |

  11. Let the integral I=int((2020)^(x+sin^(-1)(2020)^(x)))/(sqrt(1-(2020)^(...

    Text Solution

    |

  12. The integral I=int((pi)/(4))^((pi)/(2))sin^(6)xdx is satisfies

    Text Solution

    |

  13. The general solution of the differential equation (dy)/(dx)=2y tan x+t...

    Text Solution

    |

  14. If two points are taken on the mirror axis of the ellipse (x^(2))/(25)...

    Text Solution

    |

  15. If (-3, -1) is the largest interval in which the function f(x)=x^(3)+6...

    Text Solution

    |

  16. Let f(i)(x)=sin(2p(i)x) for i=1,2,3 & p(i) in N. If is given that the ...

    Text Solution

    |

  17. For any positive n, let f(n)=(4n+sqrt(4n^(2)-1))/(sqrt(2n+1)+sqrt(2n-1...

    Text Solution

    |

  18. If cos^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…)" "+sin^(-1)(x^(2)-(x^(4))/(2...

    Text Solution

    |

  19. A fair coin is tossed once. If it shows head, then 2 fiar disc are thr...

    Text Solution

    |

  20. The area bounded by |x|+|y|=1 and y ge x^(2) in the first quadrant is ...

    Text Solution

    |