Home
Class 12
MATHS
If cos^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…)...

If `cos^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…)" "+sin^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-….)=(pi)/(2) 0le |x| lt sqrt2`, then x is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \cos^{-1}\left(x - \frac{x^2}{2} + \frac{x^3}{4} - \ldots\right) + \sin^{-1}\left(x^2 - \frac{x^4}{2} + \frac{x^6}{4} - \ldots\right) = \frac{\pi}{2} \] for \( 0 \leq |x| < \sqrt{2} \), we will first simplify the series in both the inverse cosine and inverse sine terms. ### Step 1: Simplifying the Cosine Inverse Term The series in the cosine inverse term is: \[ x - \frac{x^2}{2} + \frac{x^3}{4} - \ldots \] This is a geometric series where the first term \( a = x \) and the common ratio \( r = -\frac{x}{2} \). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Thus, we have: \[ S = \frac{x}{1 - \left(-\frac{x}{2}\right)} = \frac{x}{1 + \frac{x}{2}} = \frac{x}{\frac{2 + x}{2}} = \frac{2x}{2 + x} \] ### Step 2: Simplifying the Sine Inverse Term Now, we will simplify the sine inverse term: \[ x^2 - \frac{x^4}{2} + \frac{x^6}{4} - \ldots \] This is also a geometric series where the first term \( a = x^2 \) and the common ratio \( r = -\frac{x^2}{2} \). Using the same formula for the sum of an infinite geometric series: \[ S = \frac{x^2}{1 - \left(-\frac{x^2}{2}\right)} = \frac{x^2}{1 + \frac{x^2}{2}} = \frac{x^2}{\frac{2 + x^2}{2}} = \frac{2x^2}{2 + x^2} \] ### Step 3: Substituting Back into the Equation Now we substitute the simplified sums back into the original equation: \[ \cos^{-1}\left(\frac{2x}{2 + x}\right) + \sin^{-1}\left(\frac{2x^2}{2 + x^2}\right) = \frac{\pi}{2} \] Using the property of inverse trigonometric functions: \[ \cos^{-1}(y) + \sin^{-1}(y) = \frac{\pi}{2} \] we can equate the arguments: \[ \frac{2x}{2 + x} = \frac{2x^2}{2 + x^2} \] ### Step 4: Cross-Multiplying Cross-multiplying gives us: \[ 2x(2 + x^2) = 2x^2(2 + x) \] Expanding both sides: \[ 4x + 2x^3 = 4x^2 + 2x^3 \] ### Step 5: Simplifying the Equation Subtract \( 2x^3 \) from both sides: \[ 4x = 4x^2 \] Dividing both sides by 4 (assuming \( x \neq 0 \)): \[ x = x^2 \] ### Step 6: Solving the Quadratic Equation Rearranging gives us: \[ x^2 - x = 0 \] Factoring out \( x \): \[ x(x - 1) = 0 \] Thus, the solutions are: \[ x = 0 \quad \text{or} \quad x = 1 \] ### Conclusion The values of \( x \) that satisfy the equation are: \[ \boxed{0 \text{ and } 1} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 64

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 66

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If cot^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…………..)+tan^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-……..)=(pi)/(2)" for "0lt |x| lt sqrt2 , then x is equal to

sin^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-...)+cos^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-...*)=(pi)/(2) for 0<|x|

For 0le|x|lesqrt(2) , if cos^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-…)+sin^(-1)(x-(x^(2))/(2)+(x^(3))/(4))-…)=(pi)/(2) , then x=

If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 there 0 lt 1xx1ltsqrt2 , then x equals

If cos x + sin x = a (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals

NTA MOCK TESTS-NTA JEE MOCK TEST 65-MATHEMATICS
  1. Let g(x)=xf(x), where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0)...

    Text Solution

    |

  2. Equivalent statement of the statement ''If 9 gt 10 then 3^(2)=5'' will...

    Text Solution

    |

  3. Let A be the foot of the perpendicular from the origin to the plane x-...

    Text Solution

    |

  4. Let veca, vecb and vecc are three non - collinear vectors in a plane s...

    Text Solution

    |

  5. If the system of equations 2x-3y+5z=12, 3xy+pz=q and x-7y+8z-17 is con...

    Text Solution

    |

  6. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  7. In the figure shown, OABC is a rectangle with OA=3 units, OC = 4 units...

    Text Solution

    |

  8. The line 2x-y+1=0 touches a circle at the point (2, 5) and the centre ...

    Text Solution

    |

  9. The locus of the point (x, y) whose distance from the line y=2x+2 is e...

    Text Solution

    |

  10. Let alpha and beta be the roots of x^(2)+x+1=0, then the equation whos...

    Text Solution

    |

  11. Let the integral I=int((2020)^(x+sin^(-1)(2020)^(x)))/(sqrt(1-(2020)^(...

    Text Solution

    |

  12. The integral I=int((pi)/(4))^((pi)/(2))sin^(6)xdx is satisfies

    Text Solution

    |

  13. The general solution of the differential equation (dy)/(dx)=2y tan x+t...

    Text Solution

    |

  14. If two points are taken on the mirror axis of the ellipse (x^(2))/(25)...

    Text Solution

    |

  15. If (-3, -1) is the largest interval in which the function f(x)=x^(3)+6...

    Text Solution

    |

  16. Let f(i)(x)=sin(2p(i)x) for i=1,2,3 & p(i) in N. If is given that the ...

    Text Solution

    |

  17. For any positive n, let f(n)=(4n+sqrt(4n^(2)-1))/(sqrt(2n+1)+sqrt(2n-1...

    Text Solution

    |

  18. If cos^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…)" "+sin^(-1)(x^(2)-(x^(4))/(2...

    Text Solution

    |

  19. A fair coin is tossed once. If it shows head, then 2 fiar disc are thr...

    Text Solution

    |

  20. The area bounded by |x|+|y|=1 and y ge x^(2) in the first quadrant is ...

    Text Solution

    |