Home
Class 12
MATHS
If vecm, vecn are non - parallel unit ve...

If `vecm, vecn` are non - parallel unit vectors and `vecr` is a vector which is perpendicular to `vecm and vecn` such that `|vecr|=5 and |vecm+vecn|^(2)=2+4|vecmxxvecn|`, then the value of `|[(vecm ,vecn,vecr)]|^(2)` is equal to

A

7

B

`(21)/(5)`

C

5

D

`(10)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the given information We have two non-parallel unit vectors \( \vec{m} \) and \( \vec{n} \), and a vector \( \vec{r} \) which is perpendicular to both \( \vec{m} \) and \( \vec{n} \). The magnitude of \( \vec{r} \) is given as \( |\vec{r}| = 5 \). We also have the equation: \[ |\vec{m} + \vec{n}|^2 = 2 + 4 |\vec{m} \times \vec{n}| \] ### Step 2: Expand the left-hand side Using the property of magnitudes, we can expand the left-hand side: \[ |\vec{m} + \vec{n}|^2 = |\vec{m}|^2 + |\vec{n}|^2 + 2 \vec{m} \cdot \vec{n} \] Since \( \vec{m} \) and \( \vec{n} \) are unit vectors, \( |\vec{m}|^2 = 1 \) and \( |\vec{n}|^2 = 1 \). Thus, we have: \[ |\vec{m} + \vec{n}|^2 = 1 + 1 + 2 \vec{m} \cdot \vec{n} = 2 + 2 \vec{m} \cdot \vec{n} \] ### Step 3: Set the two equations equal Now we can set the two expressions equal to each other: \[ 2 + 2 \vec{m} \cdot \vec{n} = 2 + 4 |\vec{m} \times \vec{n}| \] Subtracting 2 from both sides gives us: \[ 2 \vec{m} \cdot \vec{n} = 4 |\vec{m} \times \vec{n}| \] ### Step 4: Relate the dot product and cross product We know the relationship between the dot product and the cross product: \[ |\vec{m} \times \vec{n}| = |\vec{m}| |\vec{n}| \sin \theta = \sin \theta \] where \( \theta \) is the angle between \( \vec{m} \) and \( \vec{n} \). Therefore, we can rewrite the equation as: \[ 2 \vec{m} \cdot \vec{n} = 4 \sin \theta \] Using the dot product, we have: \[ \vec{m} \cdot \vec{n} = \cos \theta \] Thus, we can substitute: \[ 2 \cos \theta = 4 \sin \theta \] ### Step 5: Solve for \( \theta \) Rearranging gives: \[ \frac{\cos \theta}{\sin \theta} = 2 \quad \Rightarrow \quad \cot \theta = 2 \] This implies: \[ \tan \theta = \frac{1}{2} \] ### Step 6: Find \( |\vec{m}, \vec{n}, \vec{r}|^2 \) The value we need to find is \( |[\vec{m}, \vec{n}, \vec{r}]|^2 \), which can be expressed as: \[ |[\vec{m}, \vec{n}, \vec{r}]| = |\vec{r}| |\vec{m} \times \vec{n}| \] Thus: \[ |[\vec{m}, \vec{n}, \vec{r}]|^2 = |\vec{r}|^2 |\vec{m} \times \vec{n}|^2 \] ### Step 7: Calculate the values We know \( |\vec{r}| = 5 \), so \( |\vec{r}|^2 = 25 \). Now we need to find \( |\vec{m} \times \vec{n}|^2 \): Using the identity \( |\vec{m} \times \vec{n}|^2 = \sin^2 \theta \): From \( \tan \theta = \frac{1}{2} \), we can find \( \sin^2 \theta \): \[ \sin^2 \theta = \frac{1}{1 + \tan^2 \theta} = \frac{1}{1 + \left(\frac{1}{2}\right)^2} = \frac{1}{1 + \frac{1}{4}} = \frac{1}{\frac{5}{4}} = \frac{4}{5} \] ### Step 8: Final calculation Thus, \[ |\vec{m} \times \vec{n}|^2 = \frac{4}{5} \] Now substituting back: \[ |[\vec{m}, \vec{n}, \vec{r}]|^2 = 25 \cdot \frac{4}{5} = 20 \] ### Final Answer The value of \( |[\vec{m}, \vec{n}, \vec{r}]|^2 \) is \( 20 \). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 66

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 69

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If veca is perpendicular to vecb and vecr is a non-zero vector such that pvecr + (vecr.vecb)veca=vecc , then vecr is:

If veca and vecb are mutually perpendicular unit vectors, vecr is a vector satisfying vecr.veca =0, vecr.vecb=1 and (vecr veca vecb)=1 , then vecr is:

If vecr and vecs are non-zero constant vectors and the scalar b is chosen such that |vecr+bvecs| is minimum, then the value of |bvecs|^(2)+|vecr+bvecs|^(2) is equal to

If veca and vecb are othogonal unit vectors, then for a vector vecr non - coplanar with veca and vecb vector vecr xx veca is equal to

Find the unit vector perpendicular to the plane vecr*(2hati+hatj+2hatk)=5 .

Let veca and vecb be two non- zero perpendicular vectors. A vector vecr satisfying the equation vecr xx vecb = veca can be

vecu and vecn are unit vectors and t is a scalar. If vecn.veca!=0 solve the equation vecrxxveca=vecu , vecr.vecn=t

If vecm_a,vecm_band vecm_c are 3 units vectors such that vecm_a.vecm_b= vecm_a.vecm_c=0 and the angle between vecm_b.vecm_c " is " pi/3, then then value of |vecm_axxvecm_b -vecm_axxvecm_c | is equal to

The equation of the plane containing the line vecr= veca + k vecb and perpendicular to the plane vecr . vecn =q is :

NTA MOCK TESTS-NTA JEE MOCK TEST 67-MATHEMATICS
  1. The quadratic equations x^2" - "6x""+""a""=""0""a n d""x^2""c x""+""...

    Text Solution

    |

  2. The 5^("th") and the 31^("th") terms of an arithmetic progression are,...

    Text Solution

    |

  3. General solution of the equation 4 cot 2 theta = cot^(2) theta - tan...

    Text Solution

    |

  4. Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

    Text Solution

    |

  5. The arithmetic mean of a set of 50 numbers is 38. If two numbers of th...

    Text Solution

    |

  6. The area bounded by y=max(x^(2), x^(4)), y=1 and the y - axis from x=...

    Text Solution

    |

  7. the solution of the differential equation dy/dx = ax + b , a!=0 repre...

    Text Solution

    |

  8. If vecm, vecn are non - parallel unit vectors and vecr is a vector whi...

    Text Solution

    |

  9. Let : P(1):3y+z+1=0 and P(2):2x-y+3z-7=0 and the equation of line AB i...

    Text Solution

    |

  10. Let A=[(cos alpha,sin alpha),(-sinalpha,cosalpha)] and matrix B is def...

    Text Solution

    |

  11. ~(pvvq)vv(~p^^q) is equivalent to

    Text Solution

    |

  12. If the area of the rhombus enclosed by the lines xpmypmn=0 be 2 square...

    Text Solution

    |

  13. The equation of a normal to the parabola y=x^(2)-6x+6 which is perpend...

    Text Solution

    |

  14. If in the expansion of (2^x+1/4^x)^n , T3/T2 = 7 and the sum of the co...

    Text Solution

    |

  15. Find x and y if (x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)

    Text Solution

    |

  16. If 2f(x+y)=f(x).f(y) for all real x, y. where f'(0)=3 and f(4)=25, the...

    Text Solution

    |

  17. If the number of 7 digit numbers whose sum of the digits is equal to 1...

    Text Solution

    |

  18. If the integral I= ∫e^(5ln x)(x^(6)+1)^(-1)dx=ln (x^(6)+1)+C, (where C...

    Text Solution

    |

  19. Vipin and Shubham are playing a game with a coin, that comes up heads ...

    Text Solution

    |

  20. If the cirlce (x-a)^(2)+y^(2)=25 intersects the circle x^(2)+(y-b)^(2)...

    Text Solution

    |