Home
Class 12
MATHS
Let A=[(cos alpha,sin alpha),(-sinalpha,...

Let `A=[(cos alpha,sin alpha),(-sinalpha,cosalpha)]` and matrix B is defined such that `B=A+3A^(2)+3A^(3)+A^(4).` If `|B|=8` then the number of values of `alpha` in `[0, 10pi]` is

A

10

B

12

C

5

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrices and their determinants step by step. ### Step 1: Define the Matrix A The matrix \( A \) is given as: \[ A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \] ### Step 2: Calculate the Determinant of A The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated as \( ad - bc \). For our matrix \( A \): \[ |A| = \cos \alpha \cdot \cos \alpha - (-\sin \alpha) \cdot \sin \alpha = \cos^2 \alpha + \sin^2 \alpha = 1 \] ### Step 3: Define the Matrix B The matrix \( B \) is defined as: \[ B = A + 3A^2 + 3A^3 + A^4 \] ### Step 4: Factor the Expression for B Notice that we can factor the expression: \[ B = A + 3A^2 + 3A^3 + A^4 = (I + A)^4 - I \] where \( I \) is the identity matrix. ### Step 5: Calculate the Determinant of B Using the property of determinants: \[ |B| = |(I + A)^4 - I| = |(I + A)^4| \] Thus, we can express the determinant as: \[ |B| = |I + A|^4 \] ### Step 6: Calculate the Determinant of \( I + A \) The matrix \( I + A \) is: \[ I + A = \begin{pmatrix} 1 + \cos \alpha & \sin \alpha \\ -\sin \alpha & 1 + \cos \alpha \end{pmatrix} \] Calculating its determinant: \[ |I + A| = (1 + \cos \alpha)(1 + \cos \alpha) - (-\sin \alpha)(\sin \alpha) = (1 + \cos \alpha)^2 + \sin^2 \alpha \] Using the identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ |I + A| = (1 + \cos \alpha)^2 + (1 - \cos^2 \alpha) = (1 + \cos \alpha)^2 + 1 - \cos^2 \alpha \] \[ = 2 + 2\cos \alpha \] ### Step 7: Set up the Equation From the problem, we know: \[ |B| = 8 \] Thus: \[ |I + A|^4 = 8 \] Taking the fourth root: \[ |I + A| = 2 \] So: \[ 2 + 2\cos \alpha = 2 \] This simplifies to: \[ 2\cos \alpha = 0 \implies \cos \alpha = 0 \] ### Step 8: Find Values of \( \alpha \) The cosine function is zero at: \[ \alpha = \frac{\pi}{2} + n\pi, \quad n \in \mathbb{Z} \] We need to find the values of \( \alpha \) in the interval \( [0, 10\pi] \). ### Step 9: Determine the Number of Solutions The general solutions for \( \alpha \) can be expressed as: \[ \alpha = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{9\pi}{2}, \frac{11\pi}{2}, \frac{13\pi}{2}, \frac{15\pi}{2}, \frac{17\pi}{2}, \frac{19\pi}{2} \] Counting these, we find: - \( n = 0 \): \( \frac{\pi}{2} \) - \( n = 1 \): \( \frac{3\pi}{2} \) - \( n = 2 \): \( \frac{5\pi}{2} \) - \( n = 3 \): \( \frac{7\pi}{2} \) - \( n = 4 \): \( \frac{9\pi}{2} \) - \( n = 5 \): \( \frac{11\pi}{2} \) - \( n = 6 \): \( \frac{13\pi}{2} \) - \( n = 7 \): \( \frac{15\pi}{2} \) - \( n = 8 \): \( \frac{17\pi}{2} \) - \( n = 9 \): \( \frac{19\pi}{2} \) ### Conclusion The total number of values of \( \alpha \) in the interval \( [0, 10\pi] \) is **10**.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 66

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 69

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let A=[(cos alpha,sinalpha),(-sinalpha,cosalpha)] and matrix B is defined such that B = A + 4A^2+6A^3 +4A^4 + A^5,If det.(B)=1, then the number of value of alpha in [-2pi,2pi].

Let alpha=(pi)/(5) and A,=[[cos alpha,sin alpha-sin alpha,cos alpha]] then B=A^(4)-A^(3)+A^(2)-A is

The value of (sin5 alpha-sin3 alpha)/(cos5 alpha+2cos4 alpha+cos3 alpha) is

The value of (sin5 alpha-sin3 alpha)/(cos5 alpha+2cos4 alpha+cos3 alpha) is

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A^(2)=[{:(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha) :}].

Let f(x)=|(4x+1,-cosx,-sinx),(6,8sinalpha,0),(12sinalpha, 16sin^(2)alpha,1+4sinalpha)| and f(0)=0 . If the sum of all possible values of alpha is kpi for alpha in [0, 2pi] , then the value of k is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 67-MATHEMATICS
  1. The quadratic equations x^2" - "6x""+""a""=""0""a n d""x^2""c x""+""...

    Text Solution

    |

  2. The 5^("th") and the 31^("th") terms of an arithmetic progression are,...

    Text Solution

    |

  3. General solution of the equation 4 cot 2 theta = cot^(2) theta - tan...

    Text Solution

    |

  4. Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

    Text Solution

    |

  5. The arithmetic mean of a set of 50 numbers is 38. If two numbers of th...

    Text Solution

    |

  6. The area bounded by y=max(x^(2), x^(4)), y=1 and the y - axis from x=...

    Text Solution

    |

  7. the solution of the differential equation dy/dx = ax + b , a!=0 repre...

    Text Solution

    |

  8. If vecm, vecn are non - parallel unit vectors and vecr is a vector whi...

    Text Solution

    |

  9. Let : P(1):3y+z+1=0 and P(2):2x-y+3z-7=0 and the equation of line AB i...

    Text Solution

    |

  10. Let A=[(cos alpha,sin alpha),(-sinalpha,cosalpha)] and matrix B is def...

    Text Solution

    |

  11. ~(pvvq)vv(~p^^q) is equivalent to

    Text Solution

    |

  12. If the area of the rhombus enclosed by the lines xpmypmn=0 be 2 square...

    Text Solution

    |

  13. The equation of a normal to the parabola y=x^(2)-6x+6 which is perpend...

    Text Solution

    |

  14. If in the expansion of (2^x+1/4^x)^n , T3/T2 = 7 and the sum of the co...

    Text Solution

    |

  15. Find x and y if (x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)

    Text Solution

    |

  16. If 2f(x+y)=f(x).f(y) for all real x, y. where f'(0)=3 and f(4)=25, the...

    Text Solution

    |

  17. If the number of 7 digit numbers whose sum of the digits is equal to 1...

    Text Solution

    |

  18. If the integral I= ∫e^(5ln x)(x^(6)+1)^(-1)dx=ln (x^(6)+1)+C, (where C...

    Text Solution

    |

  19. Vipin and Shubham are playing a game with a coin, that comes up heads ...

    Text Solution

    |

  20. If the cirlce (x-a)^(2)+y^(2)=25 intersects the circle x^(2)+(y-b)^(2)...

    Text Solution

    |