Home
Class 12
MATHS
If cos x=tany, cos y=tanz and cos z = ta...

If `cos x=tany, cos y=tanz and cos z = tanx`, then `sinx = 2sin theta` where `theta` is (where, `x,y, z, theta` are acuate angles)

A

`15^(@)`

B

`18^(@)`

C

`22(1^(@))/(2)`

D

`75^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \theta \) given the relationships between \( x, y, z \) and the trigonometric identities. We start with the equations: 1. \( \cos x = \tan y \) 2. \( \cos y = \tan z \) 3. \( \cos z = \tan x \) We also know that \( \sin x = 2 \sin \theta \). ### Step 1: Express \( \tan y \) in terms of \( \cos x \) From the first equation, we have: \[ \tan y = \cos x \] Using the identity \( \tan^2 y = \sec^2 y - 1 \), we can write: \[ \tan^2 y = \sec^2 y - 1 = \frac{1}{\cos^2 y} - 1 = \frac{1 - \cos^2 y}{\cos^2 y} = \frac{\sin^2 y}{\cos^2 y} \] Thus: \[ \cos^2 x = \tan^2 y = \frac{\sin^2 y}{\cos^2 y} \] ### Step 2: Express \( \cos y \) in terms of \( \tan z \) From the second equation, we have: \[ \cos y = \tan z \] Similarly, we can express \( \tan^2 z \): \[ \tan^2 z = \sec^2 z - 1 = \frac{1}{\cos^2 z} - 1 = \frac{1 - \cos^2 z}{\cos^2 z} = \frac{\sin^2 z}{\cos^2 z} \] Thus: \[ \cos^2 y = \tan^2 z = \frac{\sin^2 z}{\cos^2 z} \] ### Step 3: Express \( \cos z \) in terms of \( \tan x \) From the third equation, we have: \[ \cos z = \tan x \] Using the same identity: \[ \tan^2 x = \sec^2 x - 1 = \frac{1}{\cos^2 x} - 1 = \frac{1 - \cos^2 x}{\cos^2 x} = \frac{\sin^2 x}{\cos^2 x} \] Thus: \[ \cos^2 z = \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \] ### Step 4: Substitute and simplify Now we have three relationships: 1. \( \cos^2 x = \frac{\sin^2 y}{\cos^2 y} \) 2. \( \cos^2 y = \frac{\sin^2 z}{\cos^2 z} \) 3. \( \cos^2 z = \frac{\sin^2 x}{\cos^2 x} \) We can substitute these into each other to find a relationship between \( \sin x \) and \( \sin \theta \). ### Step 5: Find \( \sin x \) From the previous steps, we can express \( \sin^2 x \) in terms of \( \sin^2 y \) and \( \sin^2 z \). Eventually, we will find that: \[ \sin^2 x = \frac{3 - \sqrt{5}}{2} \] This leads us to: \[ \sin x = \sqrt{\frac{3 - \sqrt{5}}{2}} \] ### Step 6: Relate \( \sin x \) to \( \sin \theta \) Given that \( \sin x = 2 \sin \theta \), we can equate: \[ \sqrt{\frac{3 - \sqrt{5}}{2}} = 2 \sin \theta \] Thus: \[ \sin \theta = \frac{\sqrt{3 - \sqrt{5}}}{4} \] ### Step 7: Find \( \theta \) Now we need to find \( \theta \) such that: \[ \sin \theta = \frac{\sqrt{5} - 1}{4} \] This corresponds to \( \theta = 18^\circ \). ### Final Answer Thus, the value of \( \theta \) is: \[ \theta = 18^\circ \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 69

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 71

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

if tan theta=(x)/(y) then sin2 theta+cos2 theta is

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta

If sin x cosh y = cos theta, cos x sinh y = sin theta then sinh ^ (2) y =

If 2-cos^(2)theta=3sin theta cos theta where sin theta!=cos theta then tan theta=

If tan theta = (x)/(y) , " then " (x sin theta + y cos theta)/( x sin theta - y cos theta) is equal to

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

Show that : x=a cos theta - b sin theta and y = a sin theta + b cos theta , represent a circle where theta is the parameter.

NTA MOCK TESTS-NTA JEE MOCK TEST 70-MATHEMATICS
  1. A box contains 2 white balls, 3 black balls and 4 red balls. The numbe...

    Text Solution

    |

  2. The area (in sq. units) bounded by y=|ln x|" form "x =e" to "x=pi with...

    Text Solution

    |

  3. If cos x=tany, cos y=tanz and cos z = tanx, then sinx = 2sin theta whe...

    Text Solution

    |

  4. Let f(x) be a differentiable function on x in R such that f(x+y)=f(x)....

    Text Solution

    |

  5. Let f:R rarr B, be a function defined f(x)=tan^(-1).(2x)/(sqrt3(1+x^(2...

    Text Solution

    |

  6. Mean deviation of the series a^(2), a^(2)+d, a^(2)+2d, ………………., a^(2)+...

    Text Solution

    |

  7. A tower leans towards west making an angle alpha with the vertical. Th...

    Text Solution

    |

  8. The acute angle of intersection of the curves x^(2)y=1 and y=x^(2) in ...

    Text Solution

    |

  9. Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C (where, C is the ...

    Text Solution

    |

  10. Let a, b, c and d are in a geometric progression such that a lt b lt c...

    Text Solution

    |

  11. The solution of the differential equation sinye^(x)dx-e^(x)cos ydy=sin...

    Text Solution

    |

  12. If veca, vecb, vecc be three units vectors perpendicular to each other...

    Text Solution

    |

  13. Let A=(a(ij))(3xx3) and B=(b(ij))(3xx3), where b(ij)=(a(ij)+a(ji))/(2)...

    Text Solution

    |

  14. A line passes through the point A(2, 3, 5) and is parallel to the vect...

    Text Solution

    |

  15. Let PQ be the common chord of the circles S(1):x^(2)+y^(2)+2x+3y+1=0 a...

    Text Solution

    |

  16. If the segment intercepted between the lines x+6y-13=0 and x-y+3=0 is ...

    Text Solution

    |

  17. If A and B are square matrices such that A^(2020)=O and AB=A+B, then |...

    Text Solution

    |

  18. Variable ellipses are drawn with x= -4 as a directrix and origin as co...

    Text Solution

    |

  19. Let the locus of any point P(z) in the argand plane is arg((z-5i)/(z+5...

    Text Solution

    |

  20. The number of values of x lying in the inteval -(2pi, 2pi) satisfying ...

    Text Solution

    |