Home
Class 12
MATHS
Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(...

Let `I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C` (where, C is the constant of integration). If `f((pi)/(4))=1`, then the fundamental period of `y=f(x)` is

A

`(pi)/(4)`

B

`pi`

C

`2pi`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the integral provided: ### Step 1: Set up the integral We have: \[ I = \int \frac{dx}{1 + 3\sin^2 x} \] ### Step 2: Simplify the integral To simplify the integral, we can multiply the numerator and denominator by \(\cos^2 x\): \[ I = \int \frac{\cos^2 x \, dx}{\cos^2 x + 3\sin^2 x \cos^2 x} = \int \frac{\cos^2 x \, dx}{\cos^2 x + 3(1 - \cos^2 x)} = \int \frac{\cos^2 x \, dx}{4\cos^2 x - 3} \] ### Step 3: Use a substitution Let \(t = \tan x\), then \(dt = \sec^2 x \, dx\) or \(dx = \frac{dt}{1 + t^2}\). We also know that \(\sin^2 x = \frac{t^2}{1+t^2}\) and \(\cos^2 x = \frac{1}{1+t^2}\): \[ I = \int \frac{\frac{1}{1+t^2} \cdot \frac{dt}{1+t^2}}{1 + 3\frac{t^2}{1+t^2}} = \int \frac{dt}{(1+t^2)(1 + 3t^2)} \] ### Step 4: Partial fraction decomposition We can decompose: \[ \frac{1}{(1+t^2)(1+3t^2)} = \frac{A}{1+t^2} + \frac{B}{1+3t^2} \] Multiplying through by the denominator and solving for \(A\) and \(B\) gives: \[ 1 = A(1 + 3t^2) + B(1 + t^2) \] Setting \(t = 0\) gives \(A + B = 1\). Setting \(t^2 = 1\) gives \(A + 3A = 1\) or \(4A = 1\) so \(A = \frac{1}{4}\) and \(B = \frac{3}{4}\). ### Step 5: Integrate each term Now we can integrate: \[ I = \frac{1}{4} \int \frac{dt}{1+t^2} + \frac{3}{4} \int \frac{dt}{1+3t^2} \] Using the integral formula \(\int \frac{dt}{1+t^2} = \tan^{-1}(t)\) and \(\int \frac{dt}{1+3t^2} = \frac{1}{\sqrt{3}} \tan^{-1}(\sqrt{3}t)\): \[ I = \frac{1}{4} \tan^{-1}(t) + \frac{3}{4\sqrt{3}} \tan^{-1}(\sqrt{3}t) + C \] ### Step 6: Substitute back for \(t\) Substituting back \(t = \tan x\): \[ I = \frac{1}{4} \tan^{-1}(\tan x) + \frac{3}{4\sqrt{3}} \tan^{-1}(\sqrt{3}\tan x) + C \] This simplifies to: \[ I = \frac{1}{4} x + \frac{3}{4\sqrt{3}} \tan^{-1}(\sqrt{3}\tan x) + C \] ### Step 7: Relate to \(f(x)\) Given that: \[ I = \frac{1}{2} \tan^{-1}(2f(x)) + C \] We can equate: \[ \frac{1}{4} x + \frac{3}{4\sqrt{3}} \tan^{-1}(\sqrt{3}\tan x) = \frac{1}{2} \tan^{-1}(2f(x)) + C \] ### Step 8: Find \(f(x)\) From the equation, we can find \(f(x)\): \[ f(x) = \frac{1}{2} \tan\left(\frac{x}{2}\right) \] ### Step 9: Determine the fundamental period The function \(f(x) = \tan\left(\frac{x}{2}\right)\) has a fundamental period of: \[ \text{Period} = 2\pi \div \frac{1}{2} = 4\pi \] ### Final Answer Thus, the fundamental period of \(y = f(x)\) is: \[ \boxed{4\pi} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 69

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 71

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the constant of integration) and f(2)=(1)/(2) , then the maximum value of y=f(sinx)AA x in R is

Let I=int(dx)/((cosx-sinx^(2)))=(1)/(f(x))+C (where, C is the constant of integration). If f((pi)/(3))=1-sqrt3 , then the number of solution(s) of f(x)=2020 in x in ((pi)/(2), pi) is/are

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

What is int ((1)/(cos^(2)x) - (1)/(sin^(x)x))dx equal to ? where c is the constant of integration

If I=int(1+x^(4))/((1-x^(4))^((3)/(2)))dx=(1)/(sqrt(f(x)))+C (where, C is the constant of integration) and f(2)=(-15)/(4) , then the value of 2f((1)/(sqrt2)) is

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

NTA MOCK TESTS-NTA JEE MOCK TEST 70-MATHEMATICS
  1. Let f:R rarr B, be a function defined f(x)=tan^(-1).(2x)/(sqrt3(1+x^(2...

    Text Solution

    |

  2. Mean deviation of the series a^(2), a^(2)+d, a^(2)+2d, ………………., a^(2)+...

    Text Solution

    |

  3. A tower leans towards west making an angle alpha with the vertical. Th...

    Text Solution

    |

  4. The acute angle of intersection of the curves x^(2)y=1 and y=x^(2) in ...

    Text Solution

    |

  5. Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C (where, C is the ...

    Text Solution

    |

  6. Let a, b, c and d are in a geometric progression such that a lt b lt c...

    Text Solution

    |

  7. The solution of the differential equation sinye^(x)dx-e^(x)cos ydy=sin...

    Text Solution

    |

  8. If veca, vecb, vecc be three units vectors perpendicular to each other...

    Text Solution

    |

  9. Let A=(a(ij))(3xx3) and B=(b(ij))(3xx3), where b(ij)=(a(ij)+a(ji))/(2)...

    Text Solution

    |

  10. A line passes through the point A(2, 3, 5) and is parallel to the vect...

    Text Solution

    |

  11. Let PQ be the common chord of the circles S(1):x^(2)+y^(2)+2x+3y+1=0 a...

    Text Solution

    |

  12. If the segment intercepted between the lines x+6y-13=0 and x-y+3=0 is ...

    Text Solution

    |

  13. If A and B are square matrices such that A^(2020)=O and AB=A+B, then |...

    Text Solution

    |

  14. Variable ellipses are drawn with x= -4 as a directrix and origin as co...

    Text Solution

    |

  15. Let the locus of any point P(z) in the argand plane is arg((z-5i)/(z+5...

    Text Solution

    |

  16. The number of values of x lying in the inteval -(2pi, 2pi) satisfying ...

    Text Solution

    |

  17. If [sin^(-1)x]^(2)+[sin^(-1)x]-2 le 0 (where, [.] represents the great...

    Text Solution

    |

  18. If I=int(0)^(16)(x^((1)/(4)))/(1+sqrtx)dx=k+4tan^(-1)m, then 3k-m is e...

    Text Solution

    |

  19. There are two red, two blue, two white, and certain number (greater ...

    Text Solution

    |

  20. A circle is drawn whose centre is on the x - axis and it touches the y...

    Text Solution

    |