Home
Class 12
MATHS
If veca, vecb, vecc be three units vecto...

If `veca, vecb, vecc` be three units vectors perpendicular to each other, then `|(2veca+3vecb+4vecc).(veca xx vecb+5vecbxxvecc+6vecc xx veca)|`is equal to

A

18

B

0

C

4

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ |(2\vec{a} + 3\vec{b} + 4\vec{c}) \cdot (\vec{a} \times \vec{b} + 5\vec{b} \times \vec{c} + 6\vec{c} \times \vec{a})| \] where \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors that are mutually perpendicular. ### Step 1: Understand the Cross Products Since \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors and mutually perpendicular, we can express the cross products: - \(\vec{a} \times \vec{b} = \vec{c}\) - \(\vec{b} \times \vec{c} = \vec{a}\) - \(\vec{c} \times \vec{a} = \vec{b}\) ### Step 2: Substitute the Cross Products Now substitute these results into the expression: \[ \vec{a} \times \vec{b} + 5\vec{b} \times \vec{c} + 6\vec{c} \times \vec{a} = \vec{c} + 5\vec{a} + 6\vec{b} \] ### Step 3: Rewrite the Dot Product Now we rewrite the dot product: \[ (2\vec{a} + 3\vec{b} + 4\vec{c}) \cdot (\vec{c} + 5\vec{a} + 6\vec{b}) \] ### Step 4: Expand the Dot Product Using the distributive property of the dot product, we expand it: \[ = 2\vec{a} \cdot \vec{c} + 10\vec{a} \cdot \vec{a} + 12\vec{a} \cdot \vec{b} + 3\vec{b} \cdot \vec{c} + 15\vec{b} \cdot \vec{a} + 18\vec{b} \cdot \vec{b} + 4\vec{c} \cdot \vec{c} + 20\vec{c} \cdot \vec{a} + 24\vec{c} \cdot \vec{b} \] ### Step 5: Evaluate Each Dot Product Since \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors and perpendicular: - \(\vec{a} \cdot \vec{a} = 1\) - \(\vec{b} \cdot \vec{b} = 1\) - \(\vec{c} \cdot \vec{c} = 1\) - \(\vec{a} \cdot \vec{b} = 0\) - \(\vec{b} \cdot \vec{c} = 0\) - \(\vec{c} \cdot \vec{a} = 0\) Thus, the expression simplifies to: \[ = 10(1) + 18(1) + 4(1) = 10 + 18 + 4 = 32 \] ### Step 6: Absolute Value Since we are interested in the absolute value: \[ |(2\vec{a} + 3\vec{b} + 4\vec{c}) \cdot (\vec{c} + 5\vec{a} + 6\vec{b})| = |32| = 32 \] ### Final Answer Thus, the final answer is: \[ \boxed{32} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 69

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 71

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If veca,vecb are vectors perpendicular to each other and |veca|=2, |vecb|=3, vecc xx veca=vecb , then the least value of 2|vecc-veca| is

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

NTA MOCK TESTS-NTA JEE MOCK TEST 70-MATHEMATICS
  1. Let f:R rarr B, be a function defined f(x)=tan^(-1).(2x)/(sqrt3(1+x^(2...

    Text Solution

    |

  2. Mean deviation of the series a^(2), a^(2)+d, a^(2)+2d, ………………., a^(2)+...

    Text Solution

    |

  3. A tower leans towards west making an angle alpha with the vertical. Th...

    Text Solution

    |

  4. The acute angle of intersection of the curves x^(2)y=1 and y=x^(2) in ...

    Text Solution

    |

  5. Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C (where, C is the ...

    Text Solution

    |

  6. Let a, b, c and d are in a geometric progression such that a lt b lt c...

    Text Solution

    |

  7. The solution of the differential equation sinye^(x)dx-e^(x)cos ydy=sin...

    Text Solution

    |

  8. If veca, vecb, vecc be three units vectors perpendicular to each other...

    Text Solution

    |

  9. Let A=(a(ij))(3xx3) and B=(b(ij))(3xx3), where b(ij)=(a(ij)+a(ji))/(2)...

    Text Solution

    |

  10. A line passes through the point A(2, 3, 5) and is parallel to the vect...

    Text Solution

    |

  11. Let PQ be the common chord of the circles S(1):x^(2)+y^(2)+2x+3y+1=0 a...

    Text Solution

    |

  12. If the segment intercepted between the lines x+6y-13=0 and x-y+3=0 is ...

    Text Solution

    |

  13. If A and B are square matrices such that A^(2020)=O and AB=A+B, then |...

    Text Solution

    |

  14. Variable ellipses are drawn with x= -4 as a directrix and origin as co...

    Text Solution

    |

  15. Let the locus of any point P(z) in the argand plane is arg((z-5i)/(z+5...

    Text Solution

    |

  16. The number of values of x lying in the inteval -(2pi, 2pi) satisfying ...

    Text Solution

    |

  17. If [sin^(-1)x]^(2)+[sin^(-1)x]-2 le 0 (where, [.] represents the great...

    Text Solution

    |

  18. If I=int(0)^(16)(x^((1)/(4)))/(1+sqrtx)dx=k+4tan^(-1)m, then 3k-m is e...

    Text Solution

    |

  19. There are two red, two blue, two white, and certain number (greater ...

    Text Solution

    |

  20. A circle is drawn whose centre is on the x - axis and it touches the y...

    Text Solution

    |