Home
Class 12
MATHS
If I=int(0)^(16)(x^((1)/(4)))/(1+sqrtx)d...

If `I=int_(0)^(16)(x^((1)/(4)))/(1+sqrtx)dx=k+4tan^(-1)m`, then `3k-m` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{16} \frac{x^{\frac{1}{4}}}{1 + \sqrt{x}} \, dx \) and express it in the form \( k + 4 \tan^{-1}(m) \), we will follow these steps: ### Step 1: Change of Variables Let \( x^{\frac{1}{4}} = t \). Then, \( x = t^4 \) and differentiating gives us: \[ dx = 4t^3 \, dt \] Now, we also need to change the limits of integration. When \( x = 0 \), \( t = 0^{\frac{1}{4}} = 0 \) and when \( x = 16 \), \( t = 16^{\frac{1}{4}} = 2 \). ### Step 2: Substitute in the Integral Substituting \( x \) and \( dx \) into the integral, we have: \[ I = \int_{0}^{2} \frac{t}{1 + t^2} \cdot 4t^3 \, dt = 4 \int_{0}^{2} \frac{t^4}{1 + t^2} \, dt \] ### Step 3: Simplify the Integral We can simplify the integrand: \[ \frac{t^4}{1 + t^2} = \frac{t^4 + t^2 - t^2}{1 + t^2} = t^2 - \frac{t^2}{1 + t^2} \] Thus, we can split the integral: \[ I = 4 \left( \int_{0}^{2} t^2 \, dt - \int_{0}^{2} \frac{t^2}{1 + t^2} \, dt \right) \] ### Step 4: Evaluate the First Integral The first integral is straightforward: \[ \int_{0}^{2} t^2 \, dt = \left[ \frac{t^3}{3} \right]_{0}^{2} = \frac{8}{3} \] ### Step 5: Evaluate the Second Integral For the second integral, we can use the substitution \( u = 1 + t^2 \), thus \( du = 2t \, dt \) or \( dt = \frac{du}{2t} = \frac{du}{2\sqrt{u-1}} \): \[ \int_{0}^{2} \frac{t^2}{1 + t^2} \, dt = \int_{1}^{5} \frac{u-1}{u} \cdot \frac{du}{2\sqrt{u-1}} = \frac{1}{2} \int_{1}^{5} \left( 1 - \frac{1}{u} \right) \sqrt{u-1} \, du \] This integral can be evaluated using integration techniques or numerical methods. ### Step 6: Combine Results After evaluating both integrals, we will find: \[ I = 4 \left( \frac{8}{3} - \text{(value of the second integral)} \right) \] ### Step 7: Express in Required Form We will express \( I \) in the form \( k + 4 \tan^{-1}(m) \) and compare coefficients to find \( k \) and \( m \). ### Step 8: Calculate \( 3k - m \) Once we have \( k \) and \( m \), we can calculate \( 3k - m \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 69

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 71

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int(sin^(2)x)/(1+cos2x)dx=k (tan x-x)+c then k is equal to

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . If int_(0)^(n)(1-(x)/(n))^(n)x^(k-1)dx=R beta(k, n+1) , then R is equal to

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

int(x^(49)tan^(-1)(x^(50)))/((1+x^(100)))dx=k[tan^(-1)(x^(50))]^(2)+C, , then k is equal to

If int_(0)^(1) cot^(-1)(1-x-x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

int_(0)^(4)1/(1+sqrtx)dx =…..

If int_(0)^(1) (dx)/(sqrt(1+x)-sqrtx)= (k)/(3) then k= ….

NTA MOCK TESTS-NTA JEE MOCK TEST 70-MATHEMATICS
  1. Let f:R rarr B, be a function defined f(x)=tan^(-1).(2x)/(sqrt3(1+x^(2...

    Text Solution

    |

  2. Mean deviation of the series a^(2), a^(2)+d, a^(2)+2d, ………………., a^(2)+...

    Text Solution

    |

  3. A tower leans towards west making an angle alpha with the vertical. Th...

    Text Solution

    |

  4. The acute angle of intersection of the curves x^(2)y=1 and y=x^(2) in ...

    Text Solution

    |

  5. Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C (where, C is the ...

    Text Solution

    |

  6. Let a, b, c and d are in a geometric progression such that a lt b lt c...

    Text Solution

    |

  7. The solution of the differential equation sinye^(x)dx-e^(x)cos ydy=sin...

    Text Solution

    |

  8. If veca, vecb, vecc be three units vectors perpendicular to each other...

    Text Solution

    |

  9. Let A=(a(ij))(3xx3) and B=(b(ij))(3xx3), where b(ij)=(a(ij)+a(ji))/(2)...

    Text Solution

    |

  10. A line passes through the point A(2, 3, 5) and is parallel to the vect...

    Text Solution

    |

  11. Let PQ be the common chord of the circles S(1):x^(2)+y^(2)+2x+3y+1=0 a...

    Text Solution

    |

  12. If the segment intercepted between the lines x+6y-13=0 and x-y+3=0 is ...

    Text Solution

    |

  13. If A and B are square matrices such that A^(2020)=O and AB=A+B, then |...

    Text Solution

    |

  14. Variable ellipses are drawn with x= -4 as a directrix and origin as co...

    Text Solution

    |

  15. Let the locus of any point P(z) in the argand plane is arg((z-5i)/(z+5...

    Text Solution

    |

  16. The number of values of x lying in the inteval -(2pi, 2pi) satisfying ...

    Text Solution

    |

  17. If [sin^(-1)x]^(2)+[sin^(-1)x]-2 le 0 (where, [.] represents the great...

    Text Solution

    |

  18. If I=int(0)^(16)(x^((1)/(4)))/(1+sqrtx)dx=k+4tan^(-1)m, then 3k-m is e...

    Text Solution

    |

  19. There are two red, two blue, two white, and certain number (greater ...

    Text Solution

    |

  20. A circle is drawn whose centre is on the x - axis and it touches the y...

    Text Solution

    |