Home
Class 12
MATHS
If x=sin(2tan^(-1)2sqrt3)and y=sin((1)/(...

If `x=sin(2tan^(-1)2sqrt3)and y=sin((1)/(2)tan^(-1).(12)/(5))`, then

A

`x=1-y`

B

`x^(2)=1-2y`

C

`x^(2)=1+y`

D

`y^(2)=(x)/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) given by: \[ x = \sin(2 \tan^{-1}(2\sqrt{3})) \] \[ y = \sin\left(\frac{1}{2} \tan^{-1}\left(\frac{12}{5}\right)\right) \] ### Step 1: Calculate \( x \) Let \( \theta = \tan^{-1}(2\sqrt{3}) \). Then, we have: \[ \tan \theta = 2\sqrt{3} \] Using the double angle identity for sine, we have: \[ x = \sin(2\theta) = 2 \sin \theta \cos \theta \] Now, we need to find \( \sin \theta \) and \( \cos \theta \). ### Step 2: Find \( \sin \theta \) and \( \cos \theta \) From \( \tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{2\sqrt{3}}{1} \), we can form a right triangle where: - Opposite side = \( 2\sqrt{3} \) - Adjacent side = \( 1 \) Using the Pythagorean theorem to find the hypotenuse \( h \): \[ h = \sqrt{(2\sqrt{3})^2 + 1^2} = \sqrt{12 + 1} = \sqrt{13} \] Thus, we can find \( \sin \theta \) and \( \cos \theta \): \[ \sin \theta = \frac{2\sqrt{3}}{\sqrt{13}}, \quad \cos \theta = \frac{1}{\sqrt{13}} \] ### Step 3: Substitute into the expression for \( x \) Now substituting back into the expression for \( x \): \[ x = 2 \sin \theta \cos \theta = 2 \left(\frac{2\sqrt{3}}{\sqrt{13}}\right) \left(\frac{1}{\sqrt{13}}\right) = \frac{4\sqrt{3}}{13} \] ### Step 4: Calculate \( y \) Let \( \alpha = \tan^{-1}\left(\frac{12}{5}\right) \). Then, we have: \[ \tan \alpha = \frac{12}{5} \] Using the half angle identity for sine, we have: \[ y = \sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 - \cos \alpha}{2}} \] ### Step 5: Find \( \cos \alpha \) From \( \tan \alpha = \frac{12}{5} \), we can form a right triangle where: - Opposite side = \( 12 \) - Adjacent side = \( 5 \) Using the Pythagorean theorem to find the hypotenuse \( h \): \[ h = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \] Thus, we can find \( \cos \alpha \): \[ \cos \alpha = \frac{5}{13} \] ### Step 6: Substitute into the expression for \( y \) Now substituting back into the expression for \( y \): \[ y = \sqrt{\frac{1 - \frac{5}{13}}{2}} = \sqrt{\frac{\frac{8}{13}}{2}} = \sqrt{\frac{8}{26}} = \sqrt{\frac{4}{13}} = \frac{2}{\sqrt{13}} \] ### Step 7: Relate \( x \) and \( y \) Now we have: \[ x = \frac{4\sqrt{3}}{13}, \quad y = \frac{2}{\sqrt{13}} \] To find the relationship, we can square \( y \): \[ y^2 = \left(\frac{2}{\sqrt{13}}\right)^2 = \frac{4}{13} \] Now, we can express \( x \) in terms of \( y^2 \): \[ x = \frac{4\sqrt{3}}{13} \] Thus, we can write: \[ y^2 = \frac{x}{\sqrt{3}} \] ### Final Relation The final relation between \( x \) and \( y \) is: \[ y^2 = \frac{x}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 70

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 72

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)) , then

If x = sin (2tan ^ (- 1) 2), y = sin ((1) / (2) tan ^ (- 1) ((4) / (3))), then -

If A=9tan^(-1)(sqrt(2)-1) and B=3sin^(-1)((1)/(3))+sin^(-1)((3)/(5)) then

sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

Given that 0<=x<=(1)/(2), and A=tan(sin^(-1)((x)/(sqrt(2))+sqrt((1-x^(2))/(2)))-sin^(-1)x) .If B=tan(4tan^(-1)((1)/(5))-tan^(-1)((1)/(239))) ,then find the value of A " and " B

If A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5)) , then which is greater ?

NTA MOCK TESTS-NTA JEE MOCK TEST 71-MATHEMATICS
  1. The compound statement (prarr ~q)vv(p^^q) is logically equivalent to

    Text Solution

    |

  2. The angular elevation of tower CD at a point A due south of it is 60^(...

    Text Solution

    |

  3. If x=sin(2tan^(-1)2sqrt3)and y=sin((1)/(2)tan^(-1).(12)/(5)), then

    Text Solution

    |

  4. The points on the curve f(x)=(x)/(1-x^(2)), where the tangent to it ha...

    Text Solution

    |

  5. Which of the following statements is correct?

    Text Solution

    |

  6. The area (in sq. units) bounded between the curves y=e^(x)cos x and y=...

    Text Solution

    |

  7. The curve passing through P(2, (7)/(2)) and having place 1-(1)/(x^(2))...

    Text Solution

    |

  8. A bag contains 2 red, 3 white and 5 black balls, a ball is drawn its c...

    Text Solution

    |

  9. If a, b, c are non - zero real numbers, the system of equations y+z=...

    Text Solution

    |

  10. Let A be a matrix of order 3 such that A^(2)=3A-2I where, I is an iden...

    Text Solution

    |

  11. A line L lies in the plane 2x-y-z=4 such that it is perpendicular to t...

    Text Solution

    |

  12. A line 4x+y=1 passes through the point A(2,-7) and meets line BC at B ...

    Text Solution

    |

  13. ABC is a right triangle, right - angled at the vertex A. A circle is d...

    Text Solution

    |

  14. If e(1) and e(2) are the eccentricities of the ellipse (x^(2))/(18)+(y...

    Text Solution

    |

  15. Two points P and Q in the argand plane represent the complex numbers z...

    Text Solution

    |

  16. Let AB is the focal chord of a parabola and D and C be the foot of the...

    Text Solution

    |

  17. A total of 6 Boys and 6 girls are to sit in a row alternatively and in...

    Text Solution

    |

  18. Let veca=hati+2hatj+3hati, vecb=hati-hatj+2hatk and vecc=(x-2)hati-(x-...

    Text Solution

    |

  19. If I=int(dx)/(x^(2)sqrt(1+x^(2)))=(f(x))/(x)+C, (AA x gt0) (where, C i...

    Text Solution

    |

  20. Number of integral terms in the expansion of (sqrt5+root8(7))^(1024) i...

    Text Solution

    |