Home
Class 9
MATHS
(2)/(sqrt(3)-sqrt(5))...

(2)/(sqrt(3)-sqrt(5))

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))=0

If (6)/(2sqrt(3)-sqrt(5))=(12sqrt(3)+6sqrt(5))/(k), then k=

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

(1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=

Check whether (2sqrt(3)+sqrt(5))*(2sqrt(3)-sqrt(5)) is rational or irrotational? Justify your answer

Show that (1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=0 .

Rationalise the denominator (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))

Simplify: (2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))

If ((x-2sqrt(6))(5sqrt(3)+5sqrt(2)))/(5sqrt(3)-5sqrt(2))=1, then the

Rationales the denominator and simplify: (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))( ii) (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))