Home
Class 12
MATHS
" et "f(x)=(1)/(1+e^((1)/(x)))" for "x!=...

" et "f(x)=(1)/(1+e^((1)/(x)))" for "x!=0" and "

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f(0)=0 and f(x)=(1)/(1-e^(-(1)/(x))) for x ne 0 . Then the function f(x) is -

Check the continuity of the following functions: f(x){(1)/(1-e^((1)/(x))),x!=0 and 0,x=0

If f(x)={(x)/(1+e^((1)/(x))) for x!=0,0f or x=0 then the function f(x) is differentiable for

If f(x) is continuous at x=0 , where f(x){:{((1)/(1+e^(1/x))", for " x!=0),(k", for " x=0):} , then k=

The function f(x) =[(x-1)/(1+e^(1/(x-1))]]" for "x ne 1, f(1)=0" at x=1 is"

The function f(x)=x*e^(-((1)/(|x|)+(1)/(x))) if x!=0 and f(x)=0 if x=0 then

If f(x)={(1)/(e^((1)/(x))+1),x!=0,0,x=0 then

If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):} , then f is

Test the continuity of the function _(1)f(x)atx=0, where f(x)=(e^((1)/(x)))/(1+e^((1)/(x))), when x!=0=0, where x=0

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"