Home
Class 14
MATHS
int(0)^(1)(tan^(-1)x)/(1+x^(2))dx" is eq...

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

What is int_(0)^(1) (tan^(-1))/(1+x^(2)) dx equal to ?

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x-x^(2))dx is equal to

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

If 2 int_(0)^(1) tan^(-1) x dx = int_(0)^(1) cot^(-1) (1- x+x^(2))dx , then int_(0)^(1) tan^(-1) (1-x+x^(2))dx is equal to

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

int_(0)^(1)tan^(-1)(1-x+x^(2))dx

int_(0)^(1)x(tan^(-1)x)^(2)dx

2int_(0)^(1)(tan^(-1)x)/(x)dx=

The value of int_(0)^(1) tan^(-1)((1)/(x^(2)-x+1))dx is equal to -