Home
Class 12
MATHS
ul((3))*y=ac^(3x)+be^(-2x)...

ul((3))*y=ac^(3x)+be^(-2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x=1+(1)/(2xx|__ul(1))+(1)/(4xx|__ul(2))+(1)/(8xx|__ul(3))+ ……. and y=1+(x^(2))/(|__ul(1))+(x^(4))/(|__ul(2))+(x^(6))/(|__ul(3))+ ……… Then the value of log_(e )y is

For x = 2 and y = -3, verify the following: (x+y)^(3)=x^(3)+y^(3)+3x^(2)y+3xy^(2)

for x=3 and y=-2 verify that (x-y)^(3)=x^(3)-y^(3)-3xy(x-y)

The expression (x^(3)y^(4))^(2) in the simplest form is ul

Find the blanks. (i) If x=a cos^(3)theta,y=b sin^(3)theta then ((x)/(a))^(2/3)+((y)/(b))^(2/3)=ul(P) (ii) if x=a sec theta cos phi,y=b sec theta sin phi and z=c tan theta then (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=ul(Q) (iii) If cos A+cos^(2)A=1 ,then sin^(2)A+sin^(4)A=ul(R)

(x+y)^(3)-(x-y)^(3) can be factorized as 2y(3x^(2)+y^(2)) (b) 2x(3x^(2)+y^(2))2y(3y^(2)+x^(2)) (d) 2x(x^(2)+3y^(2))

((x +y)^(3) + (x-y)^(3))/(2) -y (3x^(2) + y^(2)) = ______

{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}