Home
Class 12
MATHS
Let g(x)=f(x)-1. If f(x)+f(1-x)=2AAx in...

Let `g(x)=f(x)-1.` If `f(x)+f(1-x)=2AAx in R ,` then `g(x)` is symmetrical about. (a)The origin (b) the line`x=1/2` the point (1,0) (d) the point `(1/2,0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)+f(1-x)=2 and g(x)=f(x)-1AAx in R , then g(x) is symmetric about

Let g(x)=2f((x)/(2))+f(1-x) and f'(x)<0 in 0<=x<=1 then g(x)

Let f(x)=||x|-1|-1| and g(x)-(max f(t):x<=t<=x+1,x in R} The graph of g(x) is symmetrical about

Let g(x)=1+x-[x] and f(x)=-1 if x 0, then f|g(x)]=1x>0

If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D_(f), then The domain of f(x) is

Let f:Nrarr R,f(x)=2x-1 g:z rarrR,g(x)=(x^(2))/(2) , then (gof)(0) is :

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1)x^(2)+xf'(x)+f''(x) then f(g(1)) is equal to

If f(x)=3x+1 and g(x)=x^(3)+2 then ((f+g)/(f*g))(0) is: