Home
Class 12
MATHS
Domain (D) and range (R) of f(x)=sin^(-1...

Domain (D) and range (R) of `f(x)=sin^(-1)(cos^(-1)[x]),` where [.] denotes the greatest integer function, is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=sin^(-1)(log[x])+log(sin^(-1)[x]), where [.] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Domain of cos^(-1)[2x^(2)-3] where [ ] denotes greatest integer function, is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

Solution set of [sin^(-1)x]>[cos^(-1)x]. where [*] denotes greatest integer function