Home
Class 12
MATHS
Number of positive integral values of x ...

Number of positive integral values of x for which `f(x)=int_0^x (t^2-1)\ sin^2 t\ dt` increases where `x in [0,pi]`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is F^1(x) if F(x)= int_0^x e^(2t)sin 3t dt

The maximum value of f(x) =int_(0)^(1) t sin (x+pi t)dt is

The maximum value of f(x) =int_(0)^(1) t sin (x+pi t)dt is

The interval in which the function f(x)=int_(0)^(x) ((t)/(t+2)-1/t)dt will be non- increasing is

For the function f(x)=int_(0)^(x)(sin t)/(t)dt where x>0

For x in 0,(5pi/(2)), define f(x) = int_0^x sqrt(t) sin t dt . Then f has :

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to