Home
Class 12
MATHS
Let f(x)=sec^(-1)[1+cos^(2)x], where [.]...

Let `f(x)=sec^(-1)[1+cos^(2)x],` where [.] denotes the greatest integer function. Then the

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = sec^(-1)[1 + cos^(2) x] , wheb denotes the greatest integer function. Then the range of (x) is

Let f(x)=cos ec^(-1)[1+sin^(2)x], where [*] denotes the greatest integer function,then the range of f

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=sqrt([sin2x]-[cos2x]) (where II denotes the greatest integer function then the range of f(x) will be

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.