Home
Class 12
MATHS
Let f(x)=sin^(23)x-cos^(22)xa n dg(x)=1+...

Let `f(x)=sin^(23)x-cos^(22)xa n dg(x)=1+1/2tan^(-1)|x|` . Then the number of values of `x` in the interval `[-10pi,8pi]` satisfying the equation `f(x)=sgn(g(x))` is __________

Text Solution

Verified by Experts

`g(x)=(1)/(2)tan^(-1)|x|+1 or sgn (g(x))=1`
` or sin^(23)x-cos^(22)x=1`
`or sin^(23)x=1+cos^(22)x`
which is possible if `sinx=1 and cosx =0.` Therefore,
`x=2 n pi+(pi)/(2),n in Z`
Hence, `-10pi le 2n pi+(pi)/(2) le 8pi or -(21)/(4) le n le (15)/(4)`
`or -5 le n le 3`
Hence, number of values of `x=9`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(23)x-cos^(22)x, then the number of values of x in interval [-10 pi,20 pi] satisfying the equation f(x)=1, is

Find the number of values of x in [-pi/4, pi/4] satisfying the equation sin^(2) (2 cos^(-1) (tan x))=1

The number of values of x in [-pi,pi] satisfying the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sin x is

Number of values of x lying in [0,2 pi] and satisfying the equation sin x+cos x=1, is

The number of values of x lying in the inteval -(2pi, 2pi) satisfying the equation 1+cos 10x cos 6x=2 cos^(2)8x+sin^(2)8x is equal to

Let f(x)=1+2sin x+2cos^(2)x,0<=x<=(pi)/(2) then

Let f:[0,4 pi]rarr[0,pi] be defined by f(x)=cos^(-1)(cos x). The number of points x in[0,4 pi]4 satisfying the equation f(x)=(10-x)/(10) is

Let f(x)=(sinx)/x and g(x)=|x.f(x)|+||x-2|-1|. Then, in the interval (0,3pi) g(x) is :

Let f(x)=sin x+cos x+tan x+sin^(-1)x+cos^(-1)x+tan^(-1)x Then find the maximum and minimum values of f(x)