Home
Class 12
MATHS
The number of integral values of x for ...

The number of integral values of `x` for which `((2^(pi/(tan^(-1)x))-4)(x-4)(x-10))/(x !-(x-1)!)<0i s- - ----.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of integral values of x which satisfies |2x+1|>=|x^(2)-2x-4| is

The number of integral solutions of x^(2)-3x-4 lt 0 , is

The number of real values of x satisfying tan^(-1)((x)/(x+2))+(pi)/(2)=tan^(-1)2x^(2)+cot^(-1)((x)/(x+4))

The number of real values of x satisfying tan^(-1)((x)/(1-x^(2)))+tan^(-1)((1)/(x^(3)))=(3pi)/(4) is :

The value of integral I = int_(0)^(pi//4) (tan^(2)x + 2sin^(2)x) dx is:

tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x,x<1

f(x)=tan^(-1)x-(2)/(pi)(tan^(-1)x)^(2)+(4)/(pi^(2))(tan^(-1)x)^(3)-....oo, then the sum of integral values of a for which the equation f^(2)(x)+(sin^(-1)x)^(2)=a, possess solution,is: