Home
Class 12
MATHS
Number of point(s) of maxima and minima ...

Number of point(s) of maxima and minima (whichever exist) of the functionr `f(x)=x e^-x-(1-x)^(2/3)+2x-x^2+int_0^x 2^t log_(e^-1) t dt`, is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

Investigate for maxima and minima of the function f(x) =int_(1)^(x)[2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)]dt .

Investigate for the maxima and minima of the function _(x)f(x)=int_(1)^(x)[2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)]dt

The point of extremum of the function phi (x) = int_1^(x) e^(t^(2)/2) (1-t^(2)) dt are