Home
Class 12
MATHS
If f(x)={xcosx+(log)e((1-x)/(1+x))a; x=...

If `f(x)={xcosx+(log)_e((1-x)/(1+x))a; x=0; x!=0` is odd, then `a_______,`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={(log(1+2ax)-log(1-bx))/(x),x!=0x=0

Let f(x)=(e^(x)x cos x-x log_(e)(1+x)-x)/(x^(2)),x!=0 If f(x) is continuous at x=0, then f(0) is equal to

If f(x)=(e^(2x)-(1+4x)^(1/2))/(ln(1-x^(2))) for x!=0, then f has

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

If f(x) f(x) = (log{(1+x)^(1+x)}-x)/(x^(2)), x != 0 , is continuous at x = 0 , then : f(0) =

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then

If f(x) = (log_(e)(1+x^(2)tanx))/(sinx^(3)), x != 0 is continuous at x = 0 then f(0) must be defined as

'f(x)={(e^(^^)x-1)/(log(1+2x)),|x!=0Kx=0at

If f(x) is continuous at x=0 , where f(x)=(log(1+x+x^(2))+log(1-x+x^(2)))/(sin x) , for x!=0 , then f(0)=