Home
Class 12
MATHS
tan[cos ^(-1){sin(2tan^(-1)2)}] is equal...

`tan[cos ^(-1){sin(2tan^(-1)2)}]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1) (cos (-5)) + sin^(-1) (sin(6)) - tan^(-1)(tan (12)) is equal to : (The inverse trigonometric functions take the principal values)

cos^(-1) (cos (-5)) + sin^(-1) (sin(6)) - tan^(-1)(tan (12)) is equal to : (The inverse trigonometric functions take the principal values)

(3 pi)/(2) The value of int_(0)^((3 pi)/(2))(|tan^(-1)tan x|-|sin^(-1)sin x|)/(|tan^(-1)tan x|+|sin^(-1)sin x|)dx is equal to

tan (cos ^ (- 1) x) = sin (tan ^ (- 1) 2)

tan^(-1)[2cos(2sin^(-1)(1)/(2))]

If sin A=a cos B and cos A=b sin B then (a^(2)-1)tan^(2)A+(1-b^(2))tan^(2)B is equal to