Home
Class 11
MATHS
Let f(x)=(1)/(sin^(4)x+ cos^(4)x) ,then ...

Let `f(x)=(1)/(sin^(4)x+ cos^(4)x)` ,then range of ` f ` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Period of f(x)=sin^(4)x+cos^(4)x

Let f(x)=log_(2)(|sin x|+|cos x|). the range of f(x) is :

let f(x)=cos^(-1)((x^(2))/(1+x^(2))) the range of f is

Define f: R to R by f(x) = (sin^(2)x + cos^(4)x)/(cos^(2)x + sin^(4)x) , then the range of f consists of exactly ………….. Element(s).

Let f(x)=sec^(-1)(x-10)+cos^(-1)(10-x) Then range of f(x) is

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and k>=1. Then f_(4)(x)-f_(6)(x) equals

Let f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| The range of f(x) is