Home
Class 12
MATHS
Let for k>0 f(x)=[(k^(x)+k^(-x)-2)/(x^(...

Let for `k>0` `f(x)=[(k^(x)+k^(-x)-2)/(x^(2)) if x>0]`,`[3ell n(k-x)-2" if ",x<=0]`, if `f(x)` is continuous at `x=0`, then k is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)={:{((8^(x)-2^(x))/(k^(x)-1)", for " x!=0),(2", for " x=0):} , then k=

If f(x) = {:((8^(x)-2^(x))/(k^(x)-1)", if " x != 0 ),(=2", if " x = 0 ):} is continuous at x = 0, then k = ….

If f(x) is continuous at x=0 , where f(x)={:{((3^(x)-3^(-x))/(sin x)", for " x!=0),(k", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)={:{((cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1)", for " x!=0),(2k", for " x=0):} , then k=

Let f (x = {{: ((x^(2) - 4x + 3)/(x^(2) + 2x - 3), x ne 1),(k, x = 1):} If f (x) is continuous at x= 1, then the value of k will be

If f(x) is continuous at x=0 , where f(x) = {:{((x cos x+3tan x)/(x^(2)+sin x) ", for " x !=0),(k^(2) ", for " x=0):} , then k=

If f(x) is continuous at x = 0, where {:(f(x),=(8^(x)-2^(x))/(k^(x)-1),",","for" x != 0),(,=k, ",","for" x = 0):} , then k is equal to

If f(x) is continuous at x=0 , where f(x)={:{((sec^(2)x)^(cot^(2)x)", for " x!=0),(k", for " x=0):} , then k=